CETIFICATION

SDG No:

JC18972

Laboratory:

Accutest, New Jersey

Accutest, Florida

Site:

BMS, Building 5 Area, PR

Matrix:

Soil/Groundwater

Humacao, PR

SUMMARY:

Soil and groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken April 20-21, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List and for TCL pesticides list that reported the data under SDG No.: JC18972. Accutest Laboratory of Orlando, Florida analyzed for low molecular weight alcohols (LMWA) that also reported the data under SDG No.: JC18972. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC18972-1	RA16 (17.5-18.5)	Soil	ABN TCL special list; pesticides TCL list
JC18972-1A	RA16 (17.5-18.5)	Soil	LMWA
JC18972-2	S-40D (14 – 15)	Soil	ABN TCL special list; pesticides TCL list
JC18972-2A	S-40D (14 – 15)	Soil	LMWA
JC18972-3	S-41S (8-9)	Soil	ABN TCL special list; pesticides TCL list
JC18972-4	RA16-GWS	Groundwater	ABN TCL special list; pesticides TCL list
JC18972-4A	RA16-GWS	Groundwater	LMWA

riaci Inili

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 17, 2016

Report of Analysis

Page 1 of 3

Client Sample ID: RA16 (17.5-18.5)

Lab Sample ID: Matrix:

JC18972-1

SO - Soil

SW846 8270D SW846 3546

Analyzed

04/29/16

Date Sampled: 04/20/16 Date Received: 04/25/16

By

SB

Method: Project:

File ID

Z110167.D

BMSMC, Building 5 Area, PR

Percent Solids: 80.9

Prep Date

04/28/16

Prep Batch

OP93473

Q

Analytical Batch EZ5505

Run #1 Run #2

Initial Weight

Final Volume

30.3 g

1.0 ml

DF

1

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	82	30	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	200	37	ug/kg
120-83-2	2,4-Dichlorophenol	ND	200	33	ug/kg
105-67-9	2,4-Dimethylphenol	ND	200	75	ug/kg
51-28-5	2,4-Dinitrophenol	ND	200	180	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	200	78	ug/kg
95-48-7 -	2-Methylphenol	ND	82	59	ug/kg
	3&4-Methylphenol	ND	82	39	ug/kg
88-75-5	2-Nitrophenol	ND	200	38	ug/kg
100-02-7	4-Nitrophenol	ND	410	69	ug/kg
87-86-5	Pentachlorophenol	ND	200	100	ug/kg
108-95-2	Phenol	ND	82	31	ug/kg
58-90-2	2,3,4,6-Tetrachlorophenol	ND	200	38	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	200	37	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	200	33	ug/kg
83-32-9	Acenaphthene	ND	41	38	ug/kg
208-96-8	Acenaphthylene	ND	41	4.3	ug/kg
98-86-2	Acetophenone	ND	200	6.9	ug/kg
120-12-7	Anthracene	ND	41	3.5	ug/kg
1912-24-9	Atrazine	ND	82	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	41	7.9	ug/kg
50-32-8	Benzo(a)pyrene	ND	41	8.7	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	41	8.4	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	41	12	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	41	9.1	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	82	9.3	ug/kg
85-68-7	Butyl benzyl phthalate	ND	82	22	ug/kg
92-52-4	1,1'-Biphenyl	ND	82	7.5	ug/kg
100-52-7	Benzaldehyde	ND	200	10	ug/kg
91-58-7	2-Chloronaphthalene	ND	82	5.8	ug/kg
106-47-8	4-Chloroaniline	ND	200	11	ug/kg
86-74-8	Carbazole	ND	82	4.5	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 3

Client Sample ID: RA16 (17.5-18.5)

Lab Sample ID: JC18972-1 Matrix: SO - Soil

Method: SW846 8270D SW846 3546 Project:

BMSMC, Building 5 Area, PR

Date Sampled: 04/20/16 Date Received: 04/25/16

Percent Solids: 80.9

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	82	26	ug/kg	
218-01-9	Chrysene	ND	41	6.6	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	82	9.3	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	82	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	82	9.3	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	82	7.7	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	41	7.7	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	41	11	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	82	27	ug/kg	•
53-70-3	Dibenzo(a,h)anthracene	ND	41	15	ug/kg	
132-64-9	Dibenzofuran	ND	82	5.7	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	82	4.8	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	82	5.5	ug/kg	
84-66-2	Diethyl phthalate	ND	82	5.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	82	5.8	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	82	14	ug/kg	
206-44-0	Fluoranthene	ND	41	5.0	ug/kg	
86-73-7	Fluorene	ND	41	4.9	ug/kg	
118-74-1	Hexachlorobenzene	ND	82	8.0	ug/kg	
87-68-3	Hexachlorobutadiene	ND	41	11	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	410	65	ug/kg	
67-72-1	Hexachloroethane	ND	200	13	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	41	21	ug/kg	
78-59-1	Isophorone	ND	82	7.6	ug/kg	0004302
90-12-0	1-Methylnaphthalene	ND	82	6.6	ug/kg	SE ISOCHOO DE PL
91-57-6	2-Methylnaphthalene	ND	82	7.6	ug/kg	130
88-74-4	2-Nitroaniline	ND	200	9.3	ug/kg	fael Infante 3
99-09-2	3-Nitroaniline	ND	200	12	ug/kg	Mendez 署
100-01-6	4-Nitroaniline	ND	200	14	ug/kg	16 1888
98-95-3	Nitrobenzene	ND	82	13	ug/kg	0
621-64-7	N-Nitroso-di-n-propylamine	ND	82	12	ug/kg	CO LICENCIADO
86-30-6	N-Nitrosodiphenylamine	ND	200	21	ug/kg	CO FICEHOUS
85-01-8	Phenanthrene	ND	41	4.5	ug/kg	
129-00-0	Pyrene	ND	41	5.1	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	200	9.8	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	60%		30-1	06%	
4165-62-2	Phenol-d5	60%		30-1	06%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 3 of 3

Client Sample ID: RA16 (17.5-18.5) Lab Sample ID:

Matrix:

Method:

Project:

JC18972-1 SO - Soil

SW846 8270D SW846 3546 BMSMC, Building 5 Area, PR Date Sampled: 04/20/16 Date Received: 04/25/16

Percent Solids: 80.9

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	67%		24-140%
4165-60-0	Nitrobenzene-d5	71%		26-122%
321-60-8	2-Fluorobiphenyl	72%		36-112%
1718-51-0	Terphenyl-d14	72%		36-132%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

	·								
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC SC SV	18972) - Soil V846 8	l 1270D BY :	SIM SW846 5 Area, PR	3546	15	Date	Received: 0	4/20/16 4/25/16 0.9
Run #1 Run #2	File ID 3M61041.I	D	DF 1	Analyzed 05/03/16	By LK	Prep D 04/28/1		Prep Batch OP93473A	Analytical Batch E3M2869
Run #1 Run #2	Initial Wei 30.3 g	ight.	Final Volt 1.0 ml	ume					
CAS No.	Compoun	ıd		Result	RL	MDL	Units	Q	
123-91-1 91-20-3	1,4-Dioxa Naphthale			ND ND	4.1 4.1	0.82 0.50	ug/kg ug/kg		
CAS No.	Surrogate	Reco	veries	Run# 1	Run# 2	Lim	its		
4165-60-0 321-60-8 1718-51-0	Nitrobenz 2-Fluorob Terphenyl	ipheny		63% 73% 76%		12-1	38% 48% 57%		

⁽a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

ND = 1	Vot	detect	led
--------	-----	--------	-----

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $[\]mathbf{j} = \mathbf{Indicates}$ an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

BP

Prep Date

04/28/16

Page 1 of 1

Client Sample ID: RA16 (17.5-18.5)

Lab Sample ID:

JC18972-1

Matrix: Method: SO - Soil

SW846 8081B SW846 3546

Date Sampled: 04/20/16 Date Received: 04/25/16

Percent Solids: 80.9

Project:

BMSMC, Building 5 Area, PR

DF

1

Prep Batch OP93471

Analytical Batch G1G3976

Run #1 Run #2

Initial Weight

1G122624.D

File ID

Final Volume

Analyzed

04/29/16

Run #1 Run #2 15.1 g 10.0 mJ

Pesticide TCL List

CAS No.	Compound	Result	RL	MDŁ	Units	Q
309-00-2	Aldrin	ND	0.82	0.73	ug/kg	
319-84-6	alpha-BHC	ND	0.82	0.55	ug/kg	
319-85-7	beta-BHC	ND	0.82	0.51	ug/kg	
319-86-8	delta-BHC	ND	0.82	0.32	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.82	0.37	ug/kg	
51 03 -71-9	alpha-Chlordane	ND	0.82	0.44	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.82	0.62	ug/kg	
60-57-1	Dieldrin	ND	0.82	0.64	ug/kg	
72-54-8	4,4'-DDD	ND	0.82	0.30	ug/kg	
72-55-9	4,4'-DDE	ND	0.82	0.27	ug/kg	
50-29-3	4,4'-DDT	ND	0.82	0.31	ug/kg	
72-20-8	Endrin	ND	0.82	0.29	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.82	0.47	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.82	0.61	ug/kg	
959-98-8	Endosulfan-I	ND	0.82	0.27	ug/kg	
33213-65-9	Endosulfan-II	ND	0.82	0.77	ug/kg	
76-44-8	Heptachlor	ND	0.82	0.67	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.82	0.34	ug/kg	
72-43-5	Methoxychlor	ND	1.6	0.46	ug/kg	
53494-70-5	Endrin ketone	ND	0.82	0.43	ug/kg	
8001-35-2	Toxaphene	ND	20	14	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	ME MOCIAL
877-09-8	Tetrachloro-m-xylene	65%		24-1	36%	
877-09-8	Tetrachloro-m-xylene	67%		24-1	36%	fael II
2051-24-3	Decachlorobiphenyl	61%		10-1	53%	Méno
2051-24-3	Decachlorobiphenyl	67%		10-1	53%	10 =
						MICO

MDL = Method Detection Limit

RL = Reporting Limit

E Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

tael Infante Méndez 1(= 1888

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:					Date		3/20/16 1/25/16 3.9
Run #1 ª Run #2	File ID DF XY064101.D 1	Analyzed 05/03/16	By AFL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch F:GXY2773
Run #1 Run #2	Initial Weight Final Vo	lume					,9
CAS No.	Compound	Result	RL	MDL	Units	Q	
64-17-5	Ethanol	ND	13	2.5	mg/kg		
78-83-1	Isobutyl Alcohol	ND	13	2.5	mg/kg		
67-63-0	Isopropyl Alcohol	ND	13	2.5	mg/kg		
71-23-8	n-Propyl Alcohol	ND	13	2.5	mg/kg		
71-36-3	n-Butyl Alcohol	ND	13	2.5	mg/kg		
67-56-1	Methanol	3.9	13	2.5	mg/kg	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
111-27-3	Hexanol	112%		69-1	21%		

⁽a) Sample was received in a bulk container but was not preserved within 48 hours of sampling. Analysis performed at Accutest Laboratories, Orlando FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

SB

Prep Date

04/28/16

Page 1 of 3

Client Sample ID: S-35D (14-15) Lab Sample ID: JC18972-2

Matrix: Method: SO - Soil

SW846 8270D SW846 3546

Date Sampled: 04/21/16 Date Received: 04/25/16

Percent Solids: 78.7

Project:

BMSMC, Building 5 Area, PR

File ID DF Analyzed By 1

Prep Batch **Analytical Batch** OP93473 EZ5505

Run #1 Run #2

> Initial Weight 31.3 g

Z110166.D

Final Volume

04/29/16

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	81	30	ug/kg	
59 -50-7	4-Chloro-3-methyl phenol	ND	200	37	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	74	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	200	180	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	200	77	ug/kg	
95-48-7	2-Methylphenol	ND	81	59	ug/kg	
	3&4-Methylphenol	ND	81	39	ug/kg	
88-75-5	2-Nitrophenol	ND	200	37	ug/kg	
100-02-7	4-Nitrophenol	ND	410	69	ug/kg	
87-86-5	Pentachlorophenol	ND	200	99	ug/kg	
108-95-2	Phenol	ND	81	30	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	200	38	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	37	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	33	ug/kg	
83-32-9	Acenaphthene	ND	41	38	ug/kg	
208-96-8	Acenaphthylene	ND	41	4.3	ug/kg	
98-86-2	Acetophenone	ND	200	6.9	ug/kg	
120-12-7	Anthracene	ND	41	3.5	ug/kg	
1912-24-9	Atrazine	ND	81	17	ug/kg	
56-55-3	Benzo(a)anthracene	ND	41	7.8	ug/kg	
50-32-8	Benzo(a)pyrene	ND	41	8.6	ug/kg	-
205-99-2	Benzo(b)fluoranthene	ND	41	8.4	ug/kg	WE ASO
191-24-2	Benzo(g,h,i)perylene	ND	41	12	ug/kg	ale hou
207-08-9	Benzo(k)fluoranthene	ND	41	9.1	ug/kg	130
101-55-3	4-Bromophenyl phenyl ether	ND	81	9.3	ug/kg	la da
85-68-7	Butyl benzyl phthalate	ND	81	22	ug/kg	N N
92-52-4	1,1'-Biphenyl	ND	81	7.5	ug/kg	10
100-52-7	Benzaldehyde	ND	200	10	ug/kg	12
91-58-7	2-Chloronaphthalene	ND	81	5.8	ug/kg	MICO
106-47-8	4-Chloroaniline	ND	200	11	ug/kg	100
86-74-8	Carbazole	ND	81	4.5	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Page 2 of 3

Report of Analysis

Client Sample ID: S-35D (14-15)

Lab Sample ID: JC18972-2

Matrix: SO - Soil

Matrix: SO Method: SW

SW846 8270D SW846 3546 BMSMC, Building 5 Area, PR Date Sampled: 04/21/16 Date Received: 04/25/16 Percent Solids: 78.7

BIVISING, Building 3 Area.

ABN TCL Special List

•					
Compound	Result	RL	MDL	Units	Q
Caprolactam	ND	81	26	ug/kg	
Chrysene	ND	41	6.5		
bis(2-Chloroethoxy)methane	ND	81	9.2		
bis(2-Chloroethyl)ether	ND	81	17		
bis(2-Chloroisopropyl)ether	ND	81	9.3		
4-Chlorophenyl phenyl ether	ND	81	7.6	0	
2,4-Dinitrotoluene	ND	41	7.6		
2,6-Dinitrotoluene	ND	41	10		
3,3'-Dichlorobenzidine	ND	81	27	4.0	
Dibenzo(a,h)anthracene	ND	41	14		
Dibenzofuran	ND	81	5.6		
Di-n-butyl phthalate	ND	81	4.8		
Di-n-octyl phthalate	ND	81	5.5		
Diethyl phthalate	ND	81	5.2		
Dimethyl phthalate	ND	81	5.8		
bis (2-Ethylhexyl) phthalate	ND	81	14		
Fluoranthene	ND	41	5.0		
Fluorene	ND	41	4.8		
Hexachlorobenzene	ND	81	8.0	ug/kg	
Hexachlorobutadiene	ND	41	11	ug/kg	
Hexachlorocyclopentadiene	ND	410	65		
Hexachloroethane	ND	200	13		
Indeno(1,2,3-cd)pyrene	ND	41	21		
Isophorone	ND	81	7.6	ug/kg	
1-Methylnaphthalene	ND	81	6.6	ug/kg	
2-Methylnaphthalene	ND	81	7.6	ug/kg	
2-Nitroaniline	ND	200	9.2	ug/kg	
3-Nitroaniline	ND	200	12		
4-Nitroaniline	ND	200	14		
Nitrobenzene	ND	81	13	ug/kg	
N-Nitroso-di-n-propylamine	ND	81	12	ug/kg	
N-Nitrosodiphenylamine	ND	200	21	ug/kg	
Phenanthrene	ND	41	4.5	ug/kg	7
Pyrene	ND	41	5.1	ug/kg	- [.
1,2,4,5-Tetrachlorobenzene	ND	200	9.7	ug/kg	+ 1
Surrogate Recoveries	Run#1	Run# 2	Limi	ts	\
2-Fluorophenol	61%		30-1	06%	
Phenol-d5	61%		30-1	06%	
	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine Phenanthrene Pyrene 1,2,4,5-Tetrachlorobenzene	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether ND bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran ND Di-n-butyl phthalate ND Di-n-octyl phthalate ND Dimethyl phthalate ND Dimethyl phthalate ND Fluoranthene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorobetdiene ND Hexachloroethane ND Indeno(1,2,3-cd)pyrene ND 1-Methylnaphthalene ND 2-Methylnaphthalene ND No	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether ND 81 bis(2-Chloroisopropyl)ether ND 81 4-Chlorophenyl phenyl ether ND 81 2,4-Dinitrotoluene ND 41 2,6-Dinitrotoluene ND 3,3'-Dichlorobenzidine ND Dibenzo(a,h)anthracene ND ND 81 Dibenzofuran ND ND 81 Di-n-butyl phthalate ND Di-n-octyl phthalate ND Dimethyl phthalate ND Dimethyl phthalate ND ND 81 Dimethyl phthalate ND ND 81 Fluoranthene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorocyclopentadiene ND Hexachloroethane ND Indeno(1,2,3-cd)pyrene ND ND 1-Methylnaphthalene ND ND 1-Methylnaphthalene ND ND ND Nitrobenzene ND ND Nitrobenzene ND ND Nitroso-di-n-propylamine ND ND Nitrosodiphenylamine ND ND ND NITROSODIC	Caprolactam	Caprolactam ND 81 26 ug/kg Chrysene ND 41 6.5 ug/kg bis(2-Chloroethoxy)methane ND 81 9.2 ug/kg bis(2-Chloroethyl)ether ND 81 17 ug/kg bis(2-Chloroisopropyl)ether ND 81 9.3 ug/kg 4-Chlorophenyl phenyl ether ND 81 9.3 ug/kg 4-Chlorophenyl phenyl ether ND 81 9.3 ug/kg 2,4-Dinitrotoluene ND 41 7.6 ug/kg 2,6-Dinitrotoluene ND 41 10 ug/kg 3,3'-Dichlorobenzidine ND 81 27 ug/kg Dibenzo(a,b)anthracene ND 41 14 ug/kg Dibenzo(a,b)anthracene ND 81 5.6 ug/kg Di-n-butyl phthalate ND 81 5.5 ug/kg Di-n-octyl phthalate ND 81 5.5 ug/kg Dienlotyl phthalate ND 81 5.2 ug/kg Dienlotyl phthalate ND 81 5.2 ug/kg Dimethyl phthalate ND 81 5.8 ug/kg Fluoranthene ND 41 4.8 ug/kg Fluoranthene ND 41 4.8 ug/kg Fluoranthene ND 41 4.8 ug/kg Hexachlorobutadiene ND 41 4.8 ug/kg Hexachlorobenzene ND 41 4.8 ug/kg Hexachlorocyclopentadiene ND 41 1 ug/kg Hexachlorocyclopentadiene ND 41 1 ug/kg Indeno(1,2,3-cd)pyrene ND 41 21 ug/kg Isophorone ND 81 7.6 ug/kg 1-Methylnaphthalene ND 81 7.6 ug/kg 2-Nitroaniline ND 200 12 ug/kg Nitrobenzene ND 81 13 ug/kg N-Nitrosodiphenylamine ND 200 12 ug/kg Nitrosodiphenylamine ND 200 12 ug/kg N-Nitrosodiphenylamine ND 200 21 ug/kg N-Nitrosodiphenylamine ND 200 21 ug/kg N-Nitrosodiphenylamine ND 200 9.7 ug/kg Phenanthrene ND 41 5.1 ug/kg Phenanthrene ND 41 5.1 ug/kg Phenanthrene ND 41 5.1 ug/kg Pyrene ND 41 5.1 ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 3 of 3

Client Sample ID: S-35D (14-15) Lab Sample ID:

JC18972-2

SO - Soil SW846 8270D SW846 3546 Date Sampled: 04/21/16 Date Received: 04/25/16 Percent Solids: 78.7

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	67%		24-140%
4165-60-0	Nitrobenzene-d5	77%		26-122%
321-60-8	2-Fluorobiphenyl	68%		36-112%
1718-51-0	Terphenyl-d14	76%		36-132%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S-35D (14-15) Lab Sample ID: JC18972-2 Date Sampled: 04/21/16 Matrix: SO - Soil Date Received: 04/25/16 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: 78.7 Project: BMSMC, Building 5 Area, PR							1/25/16	
Run #1 Run #2	File ID 3M61042.D	DF 1	Analyzed 05/03/16	By LK	Prep D 04/28/1		Prep Batch OP93473A	Analytical Batch E3M2869
Run #1 Run #2	Initial Weight 31.3 g	Final Vo	olume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
123-91-1 91-20-3	1,4-Dioxane ^a Naphthalene		ND ND	4.1 4.1	0.82 0.50	ug/kg ug/kg		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
4165-60-0 321-60-8 1718-51-0	Nitrobenzene- 2-Fluorobipher Terphenyl-d14	nyl	68% 74% 82%		12-1	38% 48% 57%		

(a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

ND = Not detect	terl	
-----------------	------	--

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

19 of 1086

E = Indicates value exceeds calibration range

Report of Analysis

By

BP

Prep Date

04/28/16

Page 1 of 1

Client Sample ID: S-35D (14-15) Lab Sample ID:

JC18972-2

File ID

SO - Soil

SW846 8081B SW846 3546

Date Sampled: 04/21/16

Date Received: 04/25/16

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

Analyzed

04/29/16

Percent Solids: 78.7

Prep Batch

OP93471

Q

Analytical Batch G1G3976

Run #1 Run #2

> **Initial Weight** 16.3 g

1G122625.D

Final Volume

Run #2

Run #1

10.0 ml

DF

1

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.78	0.70	ug/kg
319-84-6	alpha-BHC	ND	0.78	0.52	ug/kg
319-85-7	beta-BHC	ND	0.78	0.48	ug/kg
319-86-8	delta-BHC	ND	0.78	0.31	ug/kg
58-89-9	gamma-BHC (Lindane)	ND	0.78	0.35	ug/kg
5103-71-9	alpha-Chlordane	ND	0.78	0.42	ug/kg
5103-74-2	gamma-Chlordane	ND	0.78	0.59	ug/kg
60-57-1	Dieldrin ^a	1.6	0.78	0.61	ug/kg
72-54-8	4,4'-DDD	ND	0.78	0.29	ug/kg
72-55-9	4,4'-DDE	ND	0.78	0.26	ug/kg
50-29-3	4,4'-DDT a	2.9	0.78	0.30	ug/kg
72-20-8	Endrin ^a	0.96	0.78	0.28	ug/kg
1031-07-8	Endosulfan sulfate	ND	0.78	0.44	ug/kg
7421-93-4	Endrin aldehyde	ND	0.78	0.58	ug/kg
959-98-8	Endosulfan-I	ND	0.78	0.26	ug/kg
33213-65-9	Endosulfan-II	ND	0.78	0.74	ug/kg
76-44-8	Heptachlor	ND	0.78	0.64	ug/kg
1024-57-3	Heptachlor epoxide	ND	0.78	0.32	ug/kg
72-43-5	Methoxychlor	ND	1.6	0.43	ug/kg
53494-70-5	Endrin ketone	ND	0.78	0.41	ug/kg
8001-35-2	Toxaphene	ND	19	13	ug/kg
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
877-09-8	Tetrachloro-m-xylene	57%		24-1	36%
877-09-8	Tetrachloro-m-xylene	56%		24-1	36%

(a) More than 40 % RPD for detected concentrations between the two GC columns.

48%

49%

ND = Not detected

2051-24-3

2051-24-3

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

] = Indicates an estimated value

10-153%

10-153%

B = Indicates analyte found in associated method blank

111-27-3

Hexanol

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:			2-2A il 8015C MO	D 5 Area, PR			Date	Received:	04/21/16 04/25/16 78.7
Run #1 ª Run #2	File ID XY0641	102.D	DF 1	Analyzed 05/03/16	By AFL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch F:GXY2773
Run #1 Run #2	Initial V 5.21 g	Weight	Final Voi 10.0 ml	ume					
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 67-56-1	Isoproj n-Prop	al Alcoho yl Alcoh yl Alcoh l Alcoho	hal ol	ND ND ND ND ND	12 12 12 12 12 12	2.4 2.4 2.4 2.4 2.4 2.4	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		
CAS No.	Surrog	ate Rec	overies	Run# 1	Run# 2	Lim	its		

⁽a) Sample was received in a bulk container but was not preserved within 48 hours of sampling. Analysis performed at Accutest Laboratories, Orlando FL.

69-121%

107%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AC

Page 1 of 3

Client Sample ID:

S-41S (8-9) JC18972-3

Lab Sample ID:

Matrix: Method: SO - Soil

SW846 8270D SW846 3546

Date Sampled:

Q

04/21/16 Date Received: 04/25/16

Percent Solids: 81.6

Project:

BMSMC, Building 5 Area, PR

Analyzed

05/03/16

Prep Date 04/28/16

Prep Batch OP93473

Analytical Batch EZ5511

Run #1 Run #2

Initial Weight

31.0 g

File ID

Z110297.D

Final Volume 1.0 ml

DF

1

Run #1 Run #2

ABN TCL Special List

95-57-8 2-Chlorophenol ND 79 29 ug/kg 59-50-7 4-Chloro-3-methyl phenol ND 200 36 ug/kg 120-83-2 2,4-Dichlorophenol ND 200 32 ug/kg 105-67-9 2,4-Dimethylphenol ND 200 72 ug/kg 51-28-5 2,4-Dinitrophenol ND 200 75 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 200 75 ug/kg 95-48-7 2-Methylphenol ND 79 38 ug/kg 95-48-7 2-Methylphenol ND 79 38 ug/kg 88-75-5 2-Nitrophenol ND 200 36 ug/kg 88-76-5 Pentachlorophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 79 30 ug/kg 88-95-2 Phenol ND 79 30 ug/kg 88-90-2 2,3,46-Trichlorophenol ND	CAS No.	Compound	Result	RL	MDL	Units
59-50-7 4-Chloro-3-methyl phenol ND 200 36 ug/kg 120-83-2 2,4-Dichlorophenol ND 200 32 ug/kg 105-67-9 2,4-Dimethylphenol ND 200 72 ug/kg 51-28-5 2,4-Dimitrophenol ND 200 75 ug/kg 95-48-7 2-Methylphenol ND 79 57 ug/kg 95-48-7 2-Methylphenol ND 79 38 ug/kg 88-75-5 2-Nitrophenol ND 200 36 ug/kg 87-86-5 Pentachlorophenol ND 200 36 ug/kg 88-95-2 Phenol ND 79 30 ug/kg 88-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 37 ug/kg 88-80-2 Acenaphthylene ND	95-57-8	2-Chlorophenol	ND	79	29	ug/kg
105-67-9 2,4-Dimethylphenol ND 200 72 ug/kg	59-50-7	4-Chloro-3-methyl phenol	ND	200	36	
51-28-5 2,4-Dinitrophenol ND 200 170 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 200 75 ug/kg 95-48-7 2-Methylphenol ND 79 57 ug/kg 88-75-5 2-Nitrophenol ND 79 38 ug/kg 80-002-7 4-Nitrophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 80-95-2 Phenol ND 79 30 ug/kg 88-96-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 88-90-2 2,3,4,6-Tetrachlorophenol ND 200 36 ug/kg 88-90-2 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-96-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 88-96-2 Acenaphthene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND	120-83-2	2,4-Dichlorophenol	ND	200	32	ug/kg
534-52-1 4,6-Dinitro-o-cresol ND 200 75 ug/kg 95-48-7 2-Methylphenol ND 79 57 ug/kg 88-75-5 2-Nitrophenol ND 200 36 ug/kg 100-02-7 4-Nitrophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 88-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 98-86-2 Acetaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 40 3.4 ug/kg 191-24-9 Atrazine ND 40	105-67-9	2,4-Dimethylphenol	ND	200	72	ug/kg
95-48-7 2-Methylphenol ND 79 57 ug/kg 3&4-Methylphenol ND 79 38 ug/kg 88-75-5 2-Nitrophenol ND 200 36 ug/kg 100-02-7 4-Nitrophenol ND 200 96 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 95-95-4 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 98-86-2 Acetophenone ND 40 37 ug/kg 98-86-2 Acetophenone ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 40 3.4 ug/kg 1912-24-9 Benzo(a)anthracene ND 40 8.4 ug/kg 191-24-2 Benzo(a)pyrene ND 40 8.4 ug/kg 191-24-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(b)fluoranthene ND 40 8.8 ug/kg 191-25-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 106-47-8 4-Chloroaniline ND 79 5.7 ug/kg	51-28-5	2,4-Dinitrophenol	ND	200	170	ug/kg
3&4-Methylphenol ND 79 38 ug/kg 88-75-5 2-Nitrophenol ND 200 36 ug/kg 100-02-7 4-Nitrophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 98-86-2 Acetaphthene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 8.4 <t< td=""><td>534-52-1</td><td>4,6-Dinitro-o-cresol</td><td>ND</td><td>200</td><td>75</td><td>ug/kg</td></t<>	534-52-1	4,6-Dinitro-o-cresol	ND	200	75	ug/kg
88-75-5 2-Nitrophenol ND 200 36 ug/kg 100-02-7 4-Nitrophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 1912-24-9 Atrazine ND 40 7.6 ug/kg 50-32-8 Benzo(a)anthracene ND 40	95-48-7		ND	79	57	ug/kg
100-02-7 4-Nitrophenol ND 400 67 ug/kg 87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 40 3.4 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 50-32-8 Benzo(a) pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b) fluoranthene ND 40			ND	79	38	ug/kg
87-86-5 Pentachlorophenol ND 200 96 ug/kg 108-95-2 Phenol ND 79 30 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 40 3.4 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 8.4 ug/kg 50-32-8 Benzo(b)fluoranthene ND 40 8.1 ug/kg 205-99-2 Benzo(k)fluoranthene ND 4			ND	200	36	ug/kg
108-95-2 Phenol ND 79 30 ug/kg 58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40	100-02-7		ND	400	67	ug/kg
58-90-2 2,3,4,6-Tetrachlorophenol ND 200 37 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(b)fluoranthene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether	87-86-5	Pentachlorophenol		200	96	ug/kg
95-95-4 2,4,5-Trichlorophenol ND 200 36 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(b)fluoranthene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 8.8 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether <td< td=""><td></td><td></td><td></td><td>79</td><td>30</td><td>ug/kg</td></td<>				79	30	ug/kg
88-06-2 2,4,6-Trichlorophenol ND 200 32 ug/kg 83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 8.1 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 79 5.7 ug/kg	·· -			200	37	ug/kg
83-32-9 Acenaphthene ND 40 37 ug/kg 208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 7.3 ug/kg 92-52-4 1,1'-Biphenyl ND			ND	200	36	ug/kg
208-96-8 Acenaphthylene ND 40 4.2 ug/kg 98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 7.3 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND			ND	200	32	ug/kg
98-86-2 Acetophenone ND 200 6.7 ug/kg 120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND				40	37	ug/kg
120-12-7 Anthracene ND 40 3.4 ug/kg 1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND </td <td></td> <td></td> <td>ND</td> <td>40</td> <td>4.2</td> <td>ug/kg</td>			ND	40	4.2	ug/kg
1912-24-9 Atrazine ND 79 16 ug/kg 56-55-3 Benzo(a)anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg				200	6.7	ug/kg
56-55-3 Benzo(a) anthracene ND 40 7.6 ug/kg 50-32-8 Benzo(a) pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b) fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i) perylene ND 40 12 ug/kg 207-08-9 Benzo(k) fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg		Anthracene	ND	40	3.4	ug/kg
50-32-8 Benzo(a)pyrene ND 40 8.4 ug/kg 205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg		Atrazine	ND	79	16	ug/kg
205-99-2 Benzo(b)fluoranthene ND 40 8.1 ug/kg 191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg		Benzo(a)anthracene	ND	40	7.6	ug/kg
191-24-2 Benzo(g,h,i)perylene ND 40 12 ug/kg 207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg			ND	40	8.4	ug/kg
207-08-9 Benzo(k)fluoranthene ND 40 8.8 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 79 9.0 ug/kg 85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg	–			40	8.1	ug/kg
101-55-3			ND	40	12	ug/kg
85-68-7 Butyl benzyl phthalate ND 79 21 ug/kg 92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg			ND	40	8.8	ug/kg
92-52-4 1,1'-Biphenyl ND 79 7.3 ug/kg 100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg			ND	79	9.0	ug/kg
100-52-7 Benzaldehyde ND 200 9.9 ug/kg 91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg			ND	79	21	ug/kg
91-58-7 2-Chloronaphthalene ND 79 5.7 ug/kg 106-47-8 4-Chloroaniline ND 200 10 ug/kg			ND	79	7.3	ug/kg
106-47-8 4-Chloroaniline ND 200 10 ug/kg	100-52-7		ND	200	9.9	ug/kg
10 Up/16			ND	79	5.7	ug/kg
86-74-8 Carbazole ND 79 4.4 ug/kg			ND	200	10	
	86-74-8	Carbazole	ND	79	4.4	ug/kg

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Page 2 of 3

Report of Analysis

Client Sample ID: S-41S (8-9) Lab Sample ID:

JC18972-3

SO - Soil

SW846 8270D SW846 3546 BMSMC, Building 5 Area, PR Date Sampled: 04/21/16 Date Received: 04/25/16

Percent Solids: 81.6

ABN TCL Special List

	- Pro-					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	79	25	ug/kg	
218-01-9	Chrysene	ND	40	6.4	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	79	9.0	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	79	16	ug/kg	
108-60-1	his(2-Chloroisopropyl)ether	ND	79	9.1	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	79	7.4	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	40	7.4	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	40	10	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	79	26	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	40	14	ug/kg	
132-64-9	Dibenzofuran	ND	79	5.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	79	4.7	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	79	5.3	ug/kg	
84-66-2	Diethyl phthalate	ND	79	5.0	ug/kg	
131-11-3	Dimethyl phthalate	ND	79	5.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	79	14	ug/kg	
206-44-0	Fluoranthene	ND	40	4.8	ug/kg	
86-73-7	Fluorene	ND	40	4.7	ug/kg	
118-74-1	Hexachlorobenzene	ND	79	7.8	ug/kg	
87-68-3	Hexachlorobutadiene	ND	40	10	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	400	63	ug/kg	
67-72-1	Hexachloroethane	ND	200	13	ug/kg ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	40	20	ug/kg	
78-59-1	Isophorone	ND	79	7.4	ug/kg	
91-57-6	2-Methylnaphthalene	ND	79	7.4	ug/kg ug/kg	
88-74-4	2-Nitroaniline	ND	200	9.0	ug/kg ug/kg	
99-09-2	3-Nitroaniline	ND	200	11		
100-01-6	4-Nitroaniline	ND	200	13	ug/kg	
91-20-3	Naphthalene	ND	40	6.3	ug/kg	
98-95-3	Nitrobenzene	ND	79	12	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	79 79		ug/kg	
86-30-6	N-Nitrosodiphenylamine			12	ug/kg	-004120-
85-01-B	Phenanthrene	ND	200	21	ug/kg	SOCIADO DE
129-00-0		ND	40	4.4	ug/kg	What I
	Pyrene	ND	40	4.9	ug/kg	fact Infante
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	200	9.5	ug/kg	Mendez
CAGN-	Constant D	Th. #1.0)(1888
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2 Elyonophonol	E20/		20.	000/	MICO LICENCIA
4165-62-2	2-Fluorophenol Phenol-d5	52%			06%	TO LICENCY
7103-02-2	FREROL-Q3	56%		30-1	06%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

45

Report of Analysis

Client Sample ID: S-41S (8-9) Lab Sample ID: JC18972-3

Matrix: Method:

Project:

SO - Soil SW846 8270D SW846 3546

BMSMC, Building 5 Area, PR

Date Sampled: 04/21/16 Date Received: 04/25/16

Percent Solids: 81.6

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	62%		24-140%
4165-60-0	Nitrobenzene-d5	73%		26-122%
321-60-8	2-Fluorobiphenyl	70%		36-112%
1718-51-0	Terphenyl-d14	69%		36-132%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC1897 SO - So SW846	2-3 oil 8270D BY	SIM SW846 5 Area, PR	3546		Date	Received: 04	1/21/16 1/25/16 1.6
Run #1 Run #2	File ID 3M61142.D	DF 1	Analyzed 05/06/16	By LK	Prep D 04/28/1		Prep Batch OP93473A	Analytical Batch E3M2874
Run #1 Run #2	Initial Weight 31.0 g	Final Vo	lume					- ,
CAS No.	Compound		Result	RL	MDL	Units	Q	
123-91-1 91-20-3	1,4-Dioxane ^a Naphthalene		ND ND	4.0 4.0	0.79 0.48	ug/kg ug/kg		
CAS No.	Surrogate Rec	coveries	Run#1	Run# 2	Lim	its		
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-c 2-Fluorobipher Terphenyl-d14	nyl	56% 64% 71%		12-1	.38% .48% .57%		

(a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:

S-41S (8-9)

Lab Sample ID:

JC18972-3

Matrix: Method: SO - Soil

SW846 8081B SW846 3546

Date Sampled: Date Received: 04/25/16

04/21/16

Percent Solids: 81.6

Project:

BMSMC, Building 5 Area, PR

Run #1

File ID 1G122626.D DF 1

Ву Analyzed 04/29/16 BP

Prep Date 04/28/16

Prep Batch OP93471

Analytical Batch G1G3976

Run #2

Initial Weight 16.4 g

Final Volume 10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDŁ	Units	Q
309-00-2	Aldrin	ND	0.75	0.67	ug/kg	
319-84-6	alpha-BHC	ND	0.75	0.50	ug/kg	
319-85-7	beta-BHC	ND	0.75	0.46	ug/kg	
319-86-8	delta-BHC	ND	0.75	0.29	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.75	0.34	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.75	0.40	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.75	0.57	ug/kg	
60-57-1	Dieldrin	ND	0.75	0.59	ug/kg	
72-54-8	4,4'-DDD	ND	0.75	0.28	ug/kg	
72-55-9	4,4'-DDE	ND	0.75	0.25	ug/kg	
50-29-3	4,4'-DDT	ND	0.75	0.29	ug/kg	
72-20-8	Endrin	ND	0.75	0.26	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.75	0.43	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.75	0.56	ug/kg	
959-98-8	Endosulfan-I	ND	0.75	0.25	ug/kg	
33213-65-9	Endosulfan-II	ND	0.75	0.71	ug/kg	
76-44-8	Heptachlor	ND	0.75	0.61	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.75	0.31	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.42	ug/kg	
53494-70-5	Endrin ketone	ND	0.75	0.39	ug/kg	
8001-35-2	Toxaphene	ND	19	13	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	49%		24-1	36%	1

ND = Not detected

877-09-8

2051-24-3

2051-24-3

MDL = Method Detection Limit

48%

45%

47%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

24-136%

10-153%

10-153%

B = Indicates analyte found in associated method blank

Report of Analysis

By

LK

Client Sample ID:	RA16-GWS
Lab Sample ID:	IC18972-4

Matrix:

AQ - Ground Water

DF

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

04/26/16

Prep Date

04/25/16

Date Sampled: 04/21/16 Date Received: 04/25/16

Percent Solids: n/a

OP93360

Q

Prep Batch **Analytical Batch**

EF6592

Run #1 Run #2

> Initial Volume 900 ml

File ID

F156563.D

Final Volume 1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l
59 -50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l
	3&4-Methylphenol	ND	2.2	0.98	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1,1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.6	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l
83-32-9	Acenaphthene	ND	1,1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Report of Analysis

Client Sample ID: RA16-GWS Lab Sample ID:

JC18972-4

AQ - Ground Water

Date Sampled: 04/21/16 Date Received: 04/25/16 Percent Solids: n/a

Method: Project:

Matrix:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	27.4	1.1	0.73	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-п-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine a	ND	2.2	0.53	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l	ARE ASOCIADO OF SIE
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	ARE METERS
129-00-0	Pyrene	ND	1.1	0.24	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	dael Infante
					3	子 Mendez
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	daef Infante Méndez 16 = 1888
367-12-4	2-Fluorophenol	62%		14-8	8%	MICO LICENCIADO

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 3 of 3

Client Sample ID: RA16-GWS Lab Sample ID:

JC18972-4 AQ - Ground Water Date Sampled: 04/21/16 Date Received: 04/25/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	42%		10-110%
118-79-6	2,4,6-Tribromophenol	113%		39-149%
4165-60-0	Nitrobenzene-d5	109%		32-128%
321-60-8	2-Fluorobiphenyl	95%		35-119%
1718-51-0	Terphenyl-d14	78%		10-126%

(a) This compound in BS is outside in house QC limits bias high.

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

By

LK

04/25/16

Page 1 of 1

Client Sample ID: RA16-GWS
Lab Sample ID: JC18972-4
Matrix: AO - Ground

File ID

4M64987A.D

AQ - Ground Water SW846 8270D BY SIM SW846 3510C Date Sampled: 04/21/16
Date Received: 04/25/16
Percent Solids: n/a

OP93360A

Method: Project:

BMSMC, Building 5 Area, PR

DF

1

Prep Date Prep Batch Analytical Batch

E4M2896

Run #1 Run #2

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q
91-20-3 Naphthalene ND 0.11 0.033 ug/l

Analyzed

04/26/16

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

 4165-60-0
 Nitrobenzene-d5
 101%
 24-125%

 321-60-8
 2-Fluorobiphenyl
 100%
 19-127%

 1718-51-0
 Terphenyl-d14
 86%
 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

BP

Page 1 of 1

Client Sample ID: RA16-GWS Lab Sample ID:

JC18972-4

AQ - Ground Water

DF

1

Date Sampled: 04/21/16 Date Received: 04/25/16

Matrix: Method:

SW846 8081B SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Run #1 Run #2 File ID 4G67636.D Analyzed 04/25/16

Prep Date 04/25/16

Prep Batch OP93361

Analytical Batch G4G1772

Initial Volume 285 ml

Final Volume

Run #1 Run #2 2.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0070	0.0042	ug/l	
319-84-6	alpha-BHC	ND	0.0070	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0070	0.0040	ug/l	
319-86-8	delta-BHC	ND	0.0070	0.0032	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0070	0.0020	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0070	0.0032	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0070	0.0032	ug/l	
60-57-1	Dieldrin	ND	0.0070	0.0025	ug/l	
72-54-8	4,4'-DDD	ND	0.0070	0.0027	ug/l	
72-55-9	4,4'-DDE	ND	0.0070	0.0043	ug/l	
50-29-3	4,4'-DDT	ND	0.0070	0.0035	ug/l	
72-20-8	Endrin	ND	0.0070	0.0035	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0070	0.0037	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0070	0.0036	ug/l	
53494-70-5	Endrin ketone	ND	0.0070	0.0036	ug/l	
959-98-8	Endosulfan-I	ND	0.0070	0.0035	ug/l	
33213-65-9	Endosulfan-II	ND	0.0070	0.0030	ug/l	
76-4 4-8	Heptachlor	ND	0.0070	0.0027	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0070	0.0046	ug/l	
72-43-5	Methoxychlor	ND	0.014	0.0040	ug/l	
8001-35-2	Toxaphene	ND	0.18	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	94%		26-13	32%	1
877-09-8	Tetrachloro-m-xylene	93%		26-13	32%	4
2051-24-3	Decachlorobiphenyl	68%		10-11	8%	23
2051-24-3	Decachlorobiphenyl	58%		10-11	8%	

tacl Infante Mendez 16 = 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

71-36-3

67-56-1

Report of Analysis

Page 1 of 1

Client Sample ID:	RA16-GWS		
Lab Sample ID:	JC18972-4A	Date Sampled:	04/21/16
Matrix:	AQ - Ground Water	Date Received:	04/25/16
Method:	SW846 8015C	Percent Solids:	n/a
Project:	BMSMC, Building 5 Area, PR		

Run #1 ª Run #2	File ID XY064067.D	DF 1	Analyzed 04/29/16	By AFL	Prep D n/a	atc	Prep Batch	Analytical Batch F:GXY2771
CAS No.	Compound		Result	RL	MDL	Units	Q	
64-17-5	Ethanol		ND	5.0	1.0	mg/l		
78-83-1	Isobutyl Alcoho	1	ND	5.0	1.0	mg/l		
67-63-0	Isopropyl Alcoh	ıol	ND	5.0	1.0	mg/l		
71-23-8	n-Propyl Alcoh	ol	ND	5.0	1.0	mg/l		

5.0

5.0

1.0

1.0

mg/l

mg/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
111-27-3	Hexanol	123%		73-123%

ND

ND

n-Butyl Alcohol

Methanol

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽a) Analysis performed at Accutest Laboratories, Orlando FL.

																						_			
		6W			CHAI	N C)F (CUST	ro:	DΥ	,										PA	ĞE	1	OF	
	SGS	ACCU	TEST-	-N.1	2233		caest - E 0, Duyto	kayama m, NJ 084	LIO.					. AE	112:	195	361	54		hans O	other Cards	m/ *			
					TEL 73" 32		FAX 7		199:34	180		01025		SOL						SIDS A	cultral Job	•	TIC	- 15	8972
17.75			Proof None	20.				100	. 1	7	, a		МД	-	E 4	, fri			a d	7.0		1540	SE S	ΣĔ	Matrix Codes
And	cson Mulhallar	Ass. Inc.	В	MS R	elca	se	As	وص	57	na	иf			4		318									0W - Orweng Was GTV - Octood Was
27	00 West che		Sweet					-n (15 gHPs	7					270	53	1808									WW - Wager SYI - Surface Wast SCI - Sed
Pur	chase A	JY 🚡 📉	HUM	10/61	PK	Compa	ny leasne							98	5015B	Pos	<u></u>								52,- Studge SED-Sedement CH - Dd
Tel	CV TO VIA	E-mail	Princip 8	· W C -		Sare-on A	30/465							700	2 6	1	≥์กู้)			il				110 - Other Liquis AR - Ar
2	4-251-	0 400	Chied Purchase	Order #		Cey			5	l _e sio		Žp		Metho	Mchod	5 - A	100	5							SOL - Other Bold WP - Wrpn FB-Feld Plank
W.R.V	era tetaylor. D	Lindsman	Project Mendeus			Alleman	۹.			-				່ວ	-Mc	iole	21								CB Cquipment Star PB-Ritus Stans TB-Tilp Dlans.
628	K. O'Ker	ly -			Collection		T			T		1	¥ 1	2	MA	24/2	0.0	-			ıl				
1000	Field ID / Pont of Colle		MECHIENVALA	Date	time	Gampine by			<u>ş</u> §	Hancu	90 30	MED	Si	S	I	2	Ψ.						Ш		LAB USE ONL
2		-185) 1-15)		4/20/16 4/21/16	1600	TY RO	50	2	-	╫	叔		Н-	X	×	×	싀		\square		\vdash		$\vdash \vdash$		EIT
3	5-415 (8-			4/21/12	1115	NR	50	5	H	$^{+}$	2	╅	+-	Š	Ž	Ş	숛	_	\vdash	_	\vdash		H		V1134
7	RAIG- GN	15	<i>A</i>	4 /21 No	1215		GW	7	3	\Box	4	\perp		X	$\overline{\mathbf{X}}$	×	X			-			<u> </u>		4271
\vdash			-			\vdash	-		H	H	-	+			_					_				3	F52
									H	$\dagger\dagger$	+			Н	\neg								\vdash		
-						-			П	П	П		\blacksquare				,								
									H	+	+	+			\dashv			İΝ	TIAL	ASE	3514	NT	2	4	A
										П	\Box					\exists	-	U	BEL	/ERI	FICA	ION	6	=	
34,230	Turkproving Tong (Busine	un desert	VIVI manage from	2 34 3EG	Mathema (A)	ab 1 161				Ш	Ш	П											1		
	_	٠.		Accessed PNE / Date	2000			≤ы "А" (L	eval 1)	}			Calog		6200						Special				2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	SML 13 Maximus Days Fa	1-501						tel "B" (L Lovel 3+4)		NYASI Sinto F	Catego with	wy B	ŀ										nthalenc
1 5	2 Day RUSH		-			: —	KJ Andre Commerc				_	COO F	~~~			_W	17/1	<u>. 5</u>	VOC	<u>, b</u>	y M S-	icth	00	<u>82</u>	70 D
								<i>of Known</i> Rossatts Co					OC Sa	Aurtejry	,		كسم								
Emanuel St.	A Roya DA des sessation	VA Ladra	54	mple Cuttody m	uri be ducue	NJ Page	voné – Pre	evite + QC	Survey		rad Ra	- 946		dina ca	ti l	Samp	io inve	nton	/is ver	ified	upon r	ecerpi	l in the	Labo	entory
17	warte	7 4/21	/16 1580	Fed	EX				2		9	DE	X				4-25	9	20	2	1	11	_		
3	that by Spanjar	Camp Fores		Received By: 3					4	-	ge	7		/		$\overline{}$	Date The	_			r mg:		1		
5	Med by:	Date Time.		hospined By: 5						6	8		0	ladaçı Mişti İslanci		******	Ð	-	**			مر		Count T	715.8c
										-															エ/

JC18972: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC18972

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Two (2) soil samples and one (1) groundwater sample were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. All samples analyzed within the recommended method holding time. Samples were

improperly preserved - not preserved within 48 hours of sampling. Results qualified as

estimated (UJ) in the affected sample.

2. MS/MSD recoveries outside the laboratory control limits but within generally acceptable

control limits. Affected samples were qualified accordingly.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

May 16, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC18972-1A

Sample location: BMSMC Building 5 Area

Sampling date: 4/20/2016

Matrix: Soil

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	13	mg/kg	1.0	-	UJ	Yes
Isobutyl Alcohol	13	mg/kg	1.0	•	UJ	Yes
Isopropyl Alcohol	13	mg/kg	1.0	-	UJ	Yes
n-Propyl Alcohol	13	mg/kg	1.0	-	UJ	Yes
n-Butyl Alcohol	13	mg/kg	1.0	-	ບມ	Yes
Methanol	3.9	mg/kg	1.0	J	IJ	Yes

Sample ID: JC18972-2A

Sample location: BMSMC Building 5 Area

Sampling date: 4/21/2016

Matrix: Soil

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	12	mg/kg	1.0	-	υJ	Yes
Isobutyl Alcohol	12	mg/kg	1.0	-	UJ	Yes
Isopropył Alcohol	12	mg/kg	1.0	2	UJ	Yes
n-Propyl Alcohol	12	mg/kg	1.0	-	UJ	Yes
n-Butyl Alcohol	12	mg/kg	1.0	2	UJ	Yes
Methanol	12	mg/kg	1.0	-	UJ	Yes

Sample ID: JC18972-4A

Sample location: BMSMC Building 5 Area

Sampling date: 4/21/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5.0	mg/l	1.0	-	UJ	Yes
Isobutyl Alcohol	5.0	mg/l	1.0	-	IJ	Yes
Isopropyl Alcohol	5.0	mg/l	1.0	-	ເບ	Yes
n-Propyl Alcohol	5.0	mg/l	1.0	-	UJ	Yes
n-Butyl Alcohol	5.0	mg/l	1.0	-	ເນ	Yes
Methanol	5.0	mg/l	1.0	-	ເນ	Yes

	Project Number:JC18972
	Date:04/20-21/2016
	Shipping Date: 04/21/2016
	EPA Region: 2
REVIEW OF VOLATILE (The following guidelines for evaluating volatile organics wer document will assist the reviewer in using professional judgme the needs of the data users. The sample results were as documents in the following order of precedence: "Test M Methods SW-846 (Final Update III, December 1996)," specific and data validation actions listed on the data review works otherwise noted.	re created to delineate required validation actions. This ent to make more informed decision and in better serving seessed according to USEPA data validation guidance fethods for Evaluating Solid Waste, Physical/Chemical ally for Methods 8000/8015C are utilized. The QC criteria sheets are from the primary guidance document, unless
The hardcopied (laboratory name) _Accutest	data package received has been reviewed and
the quality control and performance data summarized. The mo	dilled data review for VOCs included:
Lab. Project/SDG No.:JC18972	Sample matrix:Groundwater/Soil
No. of Samples:3	
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
N/A_ GC/MS Tuning	X Calibrations
N/A_ Internal Standard Performance	X Compound Identifications
XBlanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Low_molecular_weight_a	alcohols_by_SW-846_8015C
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated prondetect	
Reviewer: / af all suface	
Date:May_17,_2016/	

DATA REVIEW WORKSHEETS

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED	
4			
2000000			- 28 7

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION							
All samples analyzed within the recommended method holding time. All samples not properly preserved. Samples JC18972-1A; JC18972-2A; and JC18972-4A: were received in a bulk container but was not preserved within 48 hours of sampling. Analysis performed at Accutest Laboratories, Orlando FL. Results qualified as (UJ) in affected samples.											

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples - 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 16.2°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

DATA REVIEW WORKSHEETS

All criteria were metN/A Criteria were not met see below
mentation is within the standard
the specified criteria.
should be accepted, qualified or

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standar tuning QC limits
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.
If no, use professional judgment to determine whether the associated data should be accepted, qualified rejected.
List the samples affected:
If mass calibration is in error, all associated data are rejected.

DATA REVIEW WORKSHEETS

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	04/26/16
Dates of continuing calibration	:_04/26/16 (initial);_04/29/16
Dates of final calibration verific	cation:04/29/16
Instrument ID number:	VOA5
Matrix/Level:	Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
		<u> </u>		

Note: Initial and continuing verifications meets method specific criteria. % difference in the final calibration verification was outside the method performance criteria for all analytes. No action taken, professional judgment.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	X
Criteria were not met	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method			ic_criteria	
Field/Equipment		LEVEL!	COMPOUND	
ANALYZED	LABID	MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/e	equipment_blan	ks_included_in	_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \leq AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					of the same of the
			A STATE OF THE STA		
	No.				

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID	S	SURROGATE COMPOUND ACTIO			ACTION	
Hexan	ol DE	FM TO	d 8	BFB		
_All_surrogate_recoveries	_within_labor	ratory_control_lim	its_except_	in_the_folk	owings:	
GXY2771-MB128	%	<u> </u>			No_action,_Q	C
JC18972-4AMSD129	%				samples	
	<u>,</u>			<u> </u>		
						
QC Limits* (Aqueous)						
LL_to_UL7	3_to_123_	to	to	to		
QC Limits* (Solid-Low)						
LL_to_UL6	9_to_121	to	to	to_		
QC Limits* (Solid-Med)						
LL_to_UL	to	to	to	to		
1,2-DCA = 1,2-Dichlorome	thane-d4		TOL-d8 =	Toluene-d8	3	
DBFM = Dibromofluorome	thane		BFB = Bro	mofluorobe	enzene	
* QC limits are labor	ratory in-hous	se nerformance c	iteria II =	lower limit	Lil = unner limit	
* If QC limits are no						solid
samples.		30	-0 70 101 0q	accus una	70 100 70 101	Jona
Actions:						
AUUUIIO.						
QUALITY		%R < 10%	%R = 10)% - LL	%R > UL	\neg
Positive results		J	J		J	_

Surrogate action should be applied:

Nondetects results

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

UJ

Accept

R

All criteria were met
Criteria were not met
and/or see belowX

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC18972-4AMS/-4AMSD Sample ID:JC18972-2AMS/-2AMSD						Matrix/Level:Aqueous Matrix/Level:Soil				
MS OR MSD	COMPOUND			% R	RPD	QC LIMITS		ACTION		
MS/MSD%_recoveries_and_RPD_within_laboratory_control_limits_except_for_the_followings:_										
The QC reported here applies to the following samples: JC18972-1, JC18972-2, JC18972-4 Method: SW846 8015C MOD										
	JC189	72-2A	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	mg/kg	Q	mg/kg	mg/kg	%	mg/kg	mg/kg	%	RPD	Rec/RPD
Ethanol	ND		244	284	116	244	305	125*	7	80-117/13
Isobutyl Alcoho	I ND		244	278	114	244	294	121*	6	72-117/14
Isopropyl Alcohol	I ND		244	294	121*	244	314	129*	7	75-116/15
n-Propyl Alcohol	ND		244	289	118*	244	310	127*	7	78-116/13
n-Butyl Alcohol	ND		244	291	119*	244	310	127*	6	74-115/13
Methanol	ND		244	282	116	244	307	126*	8	77-116/13
Surrogate Recoveries		MS	MSD	JC18972-2A		Limits				
Hexanol		115%	120%	107%		69-121%				

⁽a) Sample was received in a bulk container but was not preserved within 48 hours of sampling.

All criteria were met _____ Criteria were not met and/or see below __X___

The QC reported here applies to the following samples: JC18972-4A

Method: SW846 8015C

Compound	JC18972-4/ mg/l (A Spike Q mg/l	MS mg/l	MS %	Spike mg/i	MSD mg/l	MSD %	RPD	Limits Rec/RPD
Ethanol Isobutyi Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyi Alcohol Methanol	ND ND ND ND ND ND	100 100 100 100 100 100	116 110 118 117 114 116	116 110 118 117 114 116	100 100 100 100 100 100	132 125 135 132 130 133	132* 125* 135* 132* 130* 133*	13 13 13 12 12 13	73-120/16 67-116/17 69-118/17 71-119/17 69-119/17 70-118/17
Surrogate Recoveries Hexanol	MS 111%	MSD 129%	·	JC189)72-4A	Limits 73-123	3%		

^{* =} Outside of Control Limits.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results $\,$ (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs $\,$ were < 10%, qualify all positive results (J) and reject nondetects (R).

Note: Results qualified accordingly in affected samples.

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

DATA REVIEW WORKSHEETS

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	evel/Unit		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	
						The same
		300				
					-	
		-				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All critena were met _	_X_	_
Criteria were not met		
and/or see below	_	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoverie	s_within_labora	atory_control_limits		
	<u>_</u>			

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

DATA REVIEW WORKSHEETS

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			this data package. MS/ pratory and generally ac		recoveries RPD used to e control limits.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were met _	N/A
Criteria were not met	
and/or see below	2.5

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
Sendon en			The state of the s		
	1, 1, 2				
	The second second				
1000					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

DATA REVIEW WORKSHEETS

All criteria were met _X	
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC18972-1

Methanol

RF = 2719

[] = (4237)/(2719)

= 1.56 ppm OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

Actions:

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
4		
	The state of the s	
W.		
		CONTRACTOR OF THE CONTRACTOR O

List samples which ha	ave ≤ 50 % solids	
·	_	
		=
		ALC: NO PERSON NAMED IN COLUMN TO PERSON NAM

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

EXECUTIVE NARRATIVE

SDG No:

JC18972

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

A

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Three (3) soil samples and one (1) groundwater sample were analyzed for selected pesticides following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence Hazardous Waste Support Section SOP No. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- Samples not properly preserved, results qualified as estimated (J) for detected analytes and (UJ) for non-detects.
- 2. No MS/MSD analyzed with this data package for aqueous matrix. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and RPD within laboratory control limits.
- 3. More than 40 % RPD for detected concentrations between the two GC columns for the following analytes: Dieldrin; 4,4'-DDT; and Endrin in sample JC18972-2. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

fail Infant

Signature:

May 17, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC18972-1

Sample location: BMSMC Building 5 Area

Sampling date: 20-Apr-16

Matrix: Soil

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.82	ug/kg	1	-	UJ	Yes
alpha-BHC	0.82	ug/kg	1	-	UJ	Yes
beta-BHC	0.82	ug/kg	1	-	UJ	Yes
delta-BHC	0.82	ug/kg	1	-	UJ	Yes
gamma-BHC (Lindane)	0.82	ug/kg	1	-	UJ	Yes
alpha-Chlordane	0.82	ug/kg	1	-	UJ	Yes
gamma-Chlordane	0.82	ug/kg	1	-	IJ	Yes
Dieldrin	0.82	ug/kg	1	-	UJ	Yes
4,4'-DDD	0.82	ug/kg	1	-	UJ	Yes
4,4'-DDE	0.82	ug/kg	1	-	UJ	Yes
4,4'-DDT	0.82	ug/kg	1	-	ĹŨ	Yes
Endrin	0.82	ug/kg	1	-	UJ	Yes
Endosulfan sulfate	0.82	ug/kg	1	-	UJ	Yes
Endrin aldehyde	0.82	ug/kg	1	-	UJ	Yes
Endosulfan-i	0.82	ug/kg	1	•	UJ	Yes
Endosulfan-II	0.82	ug/kg	1	-	UJ	Yes
Heptachlor	0.82	ug/kg	1	-	UJ	Yes
Heptachlor epoxide	0.82	ug/kg	1	-	UJ	Yes
Methoxychlor	1.6	ug/kg	1	-	UJ	Yes
Endrin ketone	0.82	ug/kg	1	-	UJ	Yes
Toxaphene	20	ug/kg	1	_	UJ	Yes

Sample ID: JC18972-2

Sample location: BMSMC Building 5 Area

Sampling date: 21-Apr-16

Matrix: Soil

Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
1.6	ug/kg	1	-	J	Yes
0.78	ug/kg	1	-	נט	Yes
0.78	ug/kg	1	-	IJ	Yes
2.9	ug/kg	1	-	J	Yes
0.96	ug/kg	1	-	J	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	•	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
0.78	ug/kg	1	-	UJ	Yes
1.6	ug/kg	1	-	ບ	Yes
0.78	ug/kg	1	-	UJ	Yes
19	ug/kg	1	-	UJ	Yes
	0.78 0.78 0.78 0.78 0.78 0.78 0.78 1.6 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78	0.78 ug/kg 0.78 ug/kg	0.78 ug/kg 1 0.78 ug/kg 1	0.78 ug/kg 1 - 0.78 ug/kg 1 -	0.78 ug/kg 1 - UJ 0.78 ug/kg 1 - UJ

Sample ID: JC18972-3

Sample location: BMSMC Building 5 Area

Sampling date: 21-Apr-16

Matrix: Soil

111211100						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.75	ug/kg	1	-	UJ	Yes
alpha-BHC	0.75	ug/kg	1	-	UJ	Yes
beta-BHC	0.75	ug/kg	1	-	UJ	Yes
delta-BHC	0.75	ug/kg	1	-	UJ	Yes
gamma-BHC (Lindane)	0.75	ug/kg	1	-	UJ	Yes
alpha-Chlordane	0.75	ug/kg	1	-	UJ	Yes
gamma-Chlordane	0.75	ug/kg	1	-	UJ	Yes
Dieldrin	0.75	ug/kg	1	-	UJ	Yes
4,4'-DDD	0.75	ug/kg	1	•	UJ	Yes
4,4'-DDE	0.75	ug/kg	1	-	UJ	Yes
4,4'-DDT	0.75	ug/kg	1	-	UJ	Yes
Endrin *	0.75	ug/kg	1	-	UJ	Yes
Endosulfan sulfate	0.75	ug/kg	1	•	UJ	Yes
Endrin aldehyde	0.75	ug/kg	1	•	UJ	Yes
Endosulfan-l	0.75	ug/kg	1	-	UJ	Yes
Endosulfan-II	0.75	ug/kg	1	-	UJ	Yes
Heptachlor	0.75	ug/kg	1	-	UJ	Yes
Heptachlor epoxide	0.75	ug/kg	1	-	LU .	Yes
Methoxychlor	1.5	ug/kg	1	-	UJ	Yes
Endrin ketone	0.75	ug/kg	1	-	UJ	Yes
Toxaphene	19	ug/kg	1	-	IJ	Yes

Sample ID: JC18972-4

4 7 9 *

Sample location: BMSMC Building 5 Area

Sampling date: 21-Apr-16
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.0070	ug/L	1	-	UJ	Yes
alpha-BHC	0.0070	ug/L	1	-	UJ	Yes
beta-BHC	0.0070	ug/L	1	-	IJ	Yes
delta-BHC	0.0070	ug/L	1	-	UJ	Yes
gamma-BHC (Lindane)	0.0070	ug/L	1	-	UJ	Yes
alpha-Chlordane	0.0070	ug/L	1	-	LU	Yes
gamma-Chlordane	0.0070	ug/L	1	-	UJ	Yes
Dieldrin	0.0070	ug/L	1	-	UJ	Yes
4,4'-DDD	0.0070	ug/L	1	-	UJ	Yes
4,4'-DDE	0.0070	ug/L	1	-	UJ	Yes
4,4'-DDT	0.0070	ug/L	1	•	UJ	Yes
Endrin	0.0070	ug/L	1	-	UJ	Yes
Endosulfan sulfate	0.0070	ug/L	1	-	UJ	Yes
Endrin aldehyde	0.0070	ug/L	1	-	UJ	Yes
Endrin ketone	0.0070	ug/L	1	-	UJ	Yes
Endosulfan-I	0.0070	ug/L	1	-	UJ	Yes
Endosulfan-II	0.0070	ug/L	1	-	UJ	Yes
Heptachlor	0.0070	ug/L	1	-	UJ	Yes
Heptachlor epoxide	0.0070	ug/L	1	•	IJ	Yes
Methoxychlor	0.014	ug/L	1	-	UJ	Yes
Toxaphene	0.18	ug/L	1	-	UJ	Yes

	Sampling Date: Shipping Date:	nber:JC18972 _April_20-21,_2016 _April_21,_2016 22
REVIEW OF PESTICIDE ORG	SANIC PACKAGE	
The following guidelines for evaluating volatile required validation actions. This document will as judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedence Highway Highway 1988 (1988) Highway 1988 (sist the reviewer to better serving the better serving the serving to USEPA date azardous Waste Subsequents of the bata Validation.	in using professional he needs of the data a validation guidance upport Section SOP No. The QC criteria and
The hardcopied (laboratory name) _Accutest	data padarized. The data revi	ckage received has been ew for VOCs included:
Lab. Project/SDG No.:JC18972 No. of Samples:4	Sample matrix:	Soil/Groundwater
Trip blank No.: - Field blank No.: - Field duplicate No.: - Field spikes No.: - CQC audit samples:		
X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	_X Field Du _X Calibrat _X Compou _X Compou _X Quantita	ions und Identifications und Quantitation ation Limits
Overall Comments:TCL_pesticides_list_by_SW846-8	D81B	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect		
Reviewer:Rafuel & facef Date:May_17,_2016		

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
		<u> </u>
		-
		<u> </u>
W -		
		N.
		- 1
	<u> </u>	

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
Samples not prodetects	operty preserved, re	esults qualified as estimated	(J) for detected analytes and (UJ) for non
_			

Preservatives:	_All_samples_extracted_and_analyzed_within_the_required_criteria	

Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 16.2°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

DATA REVIEW WORKSHEETS

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (UJ).
- c. if the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

	All criteria were metX
Criteria	were not met see below

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

All critena were met	Х
Criteria were not met see below	

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

	All	criteria	were	met_	_X_	
Criteria	we	re not i	mel se	e bel	OW	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of in	itial calit	oration:_	04/27/16		03/30/16
Dates of initial calibration verification:04/27/16					 03/30/16
			ation:04/27/		04/25/16
Dates of	final calil	oration:_	04/27/	16	 04/26/16
Instrume	nt ID nun	nbers:	GC1G		 GC4G
Matrix/Le	vel:		Aqueous/low	<u></u>	 Aqueous/low
					•
DATE	LAB	FILE	CRITERIA OUT	COMPOUND	 SAMPLES AFFECTED

DATE	LAB ID#	FILE _	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance in at least one of the column.					

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point !CAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (UJ) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ±25.0%?
Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

DATA REVIEW WORKSHEETS

All criteria were met _	N/A
Criteria were not met	
and/or see below	

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All critena were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bla	anks below. Hig	h and low levels blanks	must be treated separately.
CRQL concentr	rationN	/A		
Laboratory blan	lks			
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana				nit_of_0.01_and_0.001_ug/L.
Field/Equipmen	nt/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/e	quipment_blank	s_analyzed_wi	th_this_data_package	
		P-1	-	

All criteria were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _X_	
Critena were not met	
and/or see below	

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
		 			
			<u> </u>		
		<u> </u>		_	

All critena were met __X__ Critena were not met and/or see below ____

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	S				
Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
. –		94			
JC18972-4 OP93361-BS1	4G67636.D 4G67633.D	94 86	93 88	68 90	58 86
OP93361-BSD		86	85	94	86
OP93361-MB1	4G67632.D	105	107	106	98
Surrogate		Popour			
Compounds		Recove Limits	51 Y		
S1 = Tetrachlor	o-m-xylene	26-132	%		
S2 = Decachlor	obiphenyl	10-118	%		
(a) Recovery from	om GC signal #1		(b) Red	covery fr	om GC signal #2
Matrix:_Soil					_
Lab	Lab				
Sample	File				
ID	ID	S1 a	S1 b	S2 a	S2 b
JC18972-1	1G122624.D	65	67	61	67
JC18972-2	1G122625.D	57 :		48	49
JC18972-3 OP93471-BS1	1G122626.D 1G122605.D	49 71	48 74	45 75	47 76
OP93471-MB1	1G122604.D	66	69	70	71
OP93471-MS	1G122619.D	60	62	52	57
OP93471-MSD	1G122620.D	80	82	68	76
Surrogate		Recove	erv		
Compounds		Limits	,		
S1 = Tetrachloro-m-xylene		24-136%			
S2 = Decachlor	obiphenyl	10-153	%		
(a) Recovery from GC signal #1				(b) Red	covery from GC signal #2

Note: Surrogate recoveries within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*			
Criteria	Detected Target Compounds	Non-detected Target Compounds		
%R > 150%	J+	No qualification		
30% < %R < 150%	No qualification			
10% < %R < 30%	J-	UJ		
%R < 10% (sample dilution not a factor)	J-	R		
%R < 10% (sample dilution is a factor)	Use professional judgment			
RT out of RT window	Use professional judgment			
RT within RT window	No qualification			

^{*} Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were metX
Criteria were not met
and/or see below

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

List the %Rs, RPD of the compounds which do not meet the criteria.

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

Sample ID:JC19164-5				Matrix/Level:Soil		
MS OR MSD	COMPOUND			QC LIMITS	ACTION	
MS/MSD%_re	coveries_and_RPD_	within_lab	oratory_	control_limits		
			12 a (*0.9)	1280000		

Note: No MS/MSD analyzed with this data package for aqueous matrix. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and RPD within laboratory control limits.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X
Criteria were not met	
and/or see below	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LCS	concentrations:	0.167_ug/L;_16.7_ug/K	(g		
List the %R of compounds which do not meet the criteria					
	LCS ID	COMPOUND	% R	QC LIMIT	

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

Note: Blank spike/blank spike duplicate analyzed for solid and aqueous matrices. % recoveries and RPD within laboratory control limits.

All criteria were met
Criteria were not met
and/or see belowN/A

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. Florisil cartridge used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were metN/A	_
Criteria were not met	
and/or see below	

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were met	_X
Criteria were not met	
and/or see below	100

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ± 0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ± 0.10 minutes of the RT determined from the initial calibration? Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of \pm 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale?

 Yes? or No?

 N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following quidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (≥ 5.0 ng/µL for SCPs and ≥ 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were metX
Criteria were not met
and/or see below

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Note: More than 40 % RPD for detected concentrations between the two GC columns for the following analytes: Dieldrin; 4,4'-DDT; and Endrin in sample JC18972-2. No

action taken, professional judgment.

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

st samples wi	hich have ≤ 50 °	% solids		
			 	
_			 	

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		
	227-1-274	
		25.81 == -0

All criteria were metN/A
Criteria were not met
and/or see below

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample i	Ds:	*		Matrix:	-			
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION			
No field/laboratory duplicate analyzed with this data package. MS/MSD or LCS/LCSD % recoveries RPD used to assess precision. RPD within the required criteria of < 50 %.								

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for

decision making purposes.

•		

EXECUTIVE NARRATIVE

SDG No:

JC18972

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

4

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Four (4) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- Sample preservation outside the recommended criteria, no action taken professional judgment.
- 2. Initial and continuing calibration verifications meet the required criteria. Analytes not meeting the method % difference criteria meet the guidance document performance criteria for continuing calibration verification of \pm 25 or 40 %, no action taken. No closing calibration verification included in data package. No action taken, professional judgment.
- 2. Analytes not meeting the continuing calibration verification criteria of the guidance document were qualified UJ in sample JC19023-1; JC19023-2; JC19023-3; and JC19023-4
- **3.** MS/MSD samples not analyzed for aqueous matrix, blank spike/blank spike duplicate used to assess accuracy. Two of the analytes were found outside laboratory limits but within generally acceptable control limits. Analytes not detected in the sample, no action taken.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemiat License 1888

Signature:

Date:

May 17, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC18972-1

Sample location: BMSMC Building 5 Area

Sampling date: 4/20/2016

Matrix: Soil

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	82	ug/kg	1	-	U	Yes
4-Chloro-3-methyl phenol	200	ug/kg	1	-	U	Yes
2,4-Dichlorophenol	200	ug/kg	1	-	U	Yes
2,4-Dimethylphenol	200	ug/kg	1	-	U	Yes
2,4-Dinitrophenol	200	ug/kg	1	-	U	Yes
4,6-Dinitro-o-cresol	200	ug/kg	1	-	U	Yes
2-Methylphenol	82	ug/kg	1	-	U	Yes
3&4-Methylphenol	82	ug/kg	1	-	U	Yes
2-Nitrophenol	200	ug/kg	1	-	U	Yes
4-Nitrophenol	410	ug/kg	1	-	U	Yes
Pentachlorophenol	200	ug/kg	1	-	U	Yes
Phenol	82	ug/kg	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	200	ug/kg	1	-	U	Yes
2,4,5.6-Trichlorophenol	200	ug/kg	1	-	U	Yes
2,4,6-Trichlorophenol	200	ug/kg	1	-	U	Yes
Acenaphthene	41	ug/kg	1	-	U	Yes
Acenaphthylene	41	ug/kg	1	-	U	Yes
Acetophenone	200	ug/kg	1	-	U	Yes
Anthracene	41	ug/kg	1	-	U	Yes
Atrazine	82	ug/kg	1	-	U	Yes
Benzo(a)anthracene	41	ug/kg	1	-	U	Yes
Benzo(a)pyrene	41	ug/kg	1	-	U	Yes
Benzo(b)fluoranthene	41	ug/kg	1	-	U	Yes
Benzo(g,h,i)perylene	41	ug/kg	1	-	U	Yes
Benzo(k)fluoranthene	41	ug/kg	1	-	U	Yes
4-Bromophenyl phenyl ether	82	ug/kg	1	-	U	Yes
Butyl benzyl phthalate	82	ug/kg	1	-	U	Yes
1,1'-Biphenyl	82	ug/kg	1	-	U	Yes
Benzaldehyde	200	ug/kg	1	-	U	Yes
2-Chloronaphthalene	82	ug/kg	1	-	U	Yes
4-Chloroaniline	200	ug/kg	1	- :	U	Yes
Carbazole	82	ug/kg	1	-	U	Yes
Caprolactam	82	ug/kg	1	•	U	Yes
Chrysene	41	ug/kg	1	-	U	Yes
bis(2-Chloroethoxy)methane	82	ug/kg	1	-	U	Yes
bis(2-Chloroethyl)ether	82	ug/kg	1	•	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	82	ug/kg	1	-	U	Yes
4-Chlorophenyl phenyl ether	82	ug/kg	1	-	U	Yes
2,4-Dinitrotoluene	41	ug/kg	1	-	U	Yes
2,6-Dinitrotoluene	41	ug/kg	1	-	U	Yes
3,3'-Dichlorobenzidine	82	ug/kg	1	-	U	Yes
Dibenzo(a,h)anthracene	41	ug/kg	1	-	U	Yes
Dibenzofuran	82	ug/kg	1	-	U	Yes
Di-n-butyl phthalate	82	ug/kg	1	-	U	Yes
Di-n-octyl phthalate	82	ug/kg	1	-	U	Yes
Diethyl phthalate	82	ug/kg	1	-	U	Yes
Dimethyl phthalate	82	ug/kg	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	82	ug/kg	1	-	U	Yes
Fluoranthene	41	ug/kg	1	-	U	Yes
Fluorene	41	ug/kg	1	-	U	Yes
Hexachlorobenzene	82	ug/kg	1	-	U	Yes
Hexachlorobutadiene	41	ug/kg	1	-	UJ	Yes
Hexachlorocyclopentadiene	410	ug/kg	1	-	U	Yes
Hexachloroethane	200	ug/kg	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	41	ug/kg	1	-	U	Yes
Isophorone	82	ug/kg	1	-	U	Yes
1-Methylnaphthalene	82	ug/kg	1	-	U	Yes
2-Methylnaphthalene	82	ug/kg	1	-	U	Yes
2-Nitroaniline	200	ug/kg	1	-	U	Yes
3-Nitroaniline	200	ug/kg	1	-	UJ	Yes
4-Nitroaniline	200	ug/kg	1	-	U	Yes
Nitrobenzene	82	ug/kg	1	-	U	Yes
N-Nitroso-di-n-propylamine	82	ug/kg	1	-	U	Yes
Nitrosodiphenylamine	200	ug/kg	1	-	U	Yes
Phenanthrene	41	ug/kg	1	-	U	Yes
Pyrene	41	ug/kg	1	,-	U	Yes
1,2,4,5.6-Tetrachlorobenzene	200	ug/kg	1	-	U	Yes
METHOD:	8270D (SI	M)				
Naphthalene	4.1	ug/kg	1	_	U	Yes
1,4-Dioxane	4.1	ug/kg	1	-	Ū	Yes

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC18972-2

Sample location: BMSMC Building 5 Area

Sampling date: 4/21/2016

Matrix: Soil

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	82	ug/Kg		-	U	Yes
4-Chloro-3-methyl phenol	200	ug/Kg		-	U	Yes
2,4-Dichlorophenol	200	ug/Kg	1	_	U	Yes
2,4-Dimethylphenol	200	ug/Kg	1	-	U	Yes
2,4-Dinitrophenol	200	ug/Kg	1	-	U	Yes
4,6-Dinitro-o-cresol	200	ug/Kg	1	~	Ü	Yes
2-Methylphenol	82	ug/Kg	1	•	U	Yes
3&4-Methylphenol	82	ug/Kg	1	-	U	Yes
2-Nitrophenol	200	ug/Kg	1	-	U	Yes
4-Nitrophenol	410	ug/Kg	1	-	U	Yes
Pentachlorophenol	200	ug/Kg	1	-	U	Yes
Phenol	82	ug/Kg	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	200	ug/Kg	1	-	U	Yes
2,4,5.6-Trichlorophenol	200	ug/Kg	1	-	U	Yes
2,4,6-Trichlorophenol	200	ug/Kg	1	-	U	Yes
Acenaphthene	41	ug/Kg	1	-	U	Yes
Acenaphthylene	41	ug/Kg	1	•	U	Yes
Acetophenone	200	ug/Kg	1	-	U	Yes
Anthracene	41	ug/Kg	1	-	U	Yes
Atrazine	82	ug/Kg	1	-	U	Yes
Benzo(a)anthracene	41	ug/Kg	1	-	U	Yes
Benzo(a)pyrene	41	ug/Kg	1	-	U	Yes
Benzo(b)fluoranthene	41	ug/Kg	1	-	U	Yes
Benzo(g,h,i)perylene	41	ug/Kg	1	-	U	Yes
Benzo(k)fluoranthene	41	ug/Kg	1	-	U	Yes
4-Bromophenyl phenyl ether	82	ug/Kg	1	•	U	Yes
Butyl benzyl phthalate	82	ug/Kg	1	•	U	Yes
1,1'-Biphenyl	82	ug/Kg	1	-	U	Yes
Benzaldehyde	200	ug/Kg	1	-	U	Yes
2-Chloronaphthalene	82	ug/Kg		-	U	Yes
4-Chloroaniline	200	ug/Kg	1	•	U	Yes
Carbazole	82	ug/Kg	1	-	U	Yes
Caprolactam	82	ug/Kg	1	-	U	Yes
Chrysene	41	ug/Kg	1	-	U	Yes
bis(2-Chloroethoxy)methane	82	ug/Kg	1	-	U	Yes
bis(2-Chloroethyl)ether	82	ug/Kg	1	-	U	Yes

WETHOD.	82700					
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
bis (2-Chlorois opropyl) ether	82	ug/Kg		-	U	Yes
4-Chlorophenyl phenyl ether	82	ug/Kg		-	U	Yes
2,4-Dinitrotoluene	41	ug/Kg	1	-	U	Yes
2,6-Dinitrotoluene	41	ug/Kg	1	•	U	Yes
3,3'-Dichlorobenzidine	82	ug/Kg	1	-	U	Yes
Dibenzo(a,h)anthracene	41	ug/Kg	1	-	U	Yes
Dibenzofuran	82	ug/Kg	1	-	U	Yes
Di-n-butyl phthalate	82	ug/Kg	1	•	U	Yes
Di-n-octyl phthalate	82	ug/Kg	1	•	U	Yes
Diethyl phthalate	82	ug/Kg	1	-	U	Yes
Dimethyl phthalate	82	ug/Kg	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	82	ug/Kg	1	-	U	Yes
Fluoranthene	41	ug/Kg	1	-	U	Yes
Fluorene	41	ug/Kg	1	-	U	Yes
Hexachlorobenzene	82	ug/Kg	1	-	U	Yes
Hexachlorobutadiene	41	ug/Kg	1	-	UJ	Yes
Hexachlorocyclopentadiene	410	ug/Kg	1	-	U	Yes
Hexachloroethane	200	ug/Kg	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	41	ug/Kg	1	-	U	Yes
Isophorone	82	ug/Kg	1	-	U	Yes
1-Methylnaphthalene	82	ug/Kg	1	-	U	Yes
2-Methylnaphthalene	82	ug/Kg	1		U	Yes
2-Nitroaniline	200	ug/Kg	1		U	Yes
3-Nitroaniline	200	ug/Kg	1	_	UJ	Yes
4-Nitroaniline	200	ug/Kg	1	-	U	Yes
Nitrobenzene	82	ug/Kg	1	-	U	Yes
N-Nitroso-di-n-propylamine	82	ug/Kg	1	-	U	Yes
Nitrosodiphenylamine	200	ug/Kg	1	_	U	Yes
Phenanthrene	41	ug/Kg	1	-	U	Yes
Pyrene	41	ug/Kg	1	-	Ü	Yes
1,2,4,5.6-Tetrachlorobenzene	200	ug/Kg		_	U	Yes
		J. J				5.
METHOD:	8270D (SI	M)				
Naphthalene	4.1	ug/Kg	1	-	U	Yes
1,4-Dioxane	4.1	ug/Kg	1	-	U	Yes

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC18972-3

Sample location: BMSMC Building 5 Area

Sampling date: 4/21/2016

Matrix: Soil

METHOD:	62/UD					
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	79	ug/kg	1	-	U	Yes
4-Chloro-3-methyl phenol	200	ug/kg	1	-	U	Yes
2,4-Dichlorophenol	200	ug/kg	1	-	U	Yes
2,4-Dimethylphenol	200	ug/kg	1	-	U	Yes
2,4-Dinitrophenol	200	ug/kg	1	-	U	Yes
4,6-Dinitro-o-cresol	200	ug/kg	1	-	U	Yes
2-Methylphenol	79	ug/kg	1	-	U	Yes
3&4-Methylphenol	79	ug/kg	1	-	U	Yes
2-Nitrophenol	200	ug/kg	1	-	U	Yes
4-Nitrophenol	400	ug/kg	1	-	U	Yes
Pentachlorophenol	200	ug/kg	1	-	U	Yes
Phenol	79	ug/kg	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	200	ug/kg	1	-	U	Yes
2,4,5.6-Trichlorophenol	200	ug/kg	1	-	U	Yes
2,4,6-Trichlorophenol	200	ug/kg	1	-	U	Yes
Acenaphthene	40	ug/kg	1	-	U	Yes
Acenaphthylene	40	ug/kg	1		U	Yes
Acetophenone	200	ug/kg	1	-	ı, U	Yes
Anthracene	40	ug/kg	1	-	U	Yes
Atrazine	79	ug/kg	1	-	U	Yes
Benzo(a)anthracene	40	ug/kg	1	-	U	Yes
Benzo(a)pyrene	40	ug/kg	1	-	U	Yes
Benzo(b)fluoranthene	40	ug/kg	1	-	U	Yes
Benzo(g,h,i)perylene	40	ug/kg	1	-	U	Yes
Benzo(k)fluoranthene	79	ug/kg	1	-	U	Yes
4-Bromophenyl phenyl ether	79	ug/kg	1	-	U	Yes
Butyl benzyl phthalate	79	ug/kg	1	-	U	Yes
1,1'-Biphenyl	79	ug/kg	1	-	U	Yes
Benzaldehyde	200	ug/kg	1	-	U	Yes
2-Chloronaphthalene	79	ug/kg	1	-	U	Yes
4-Chloroaniline	200	ug/kg	1	-	U	Yes
Carbazole	79	ug/kg	1	_	U	Yes
Caprolactam	79	ug/kg	1	_	U	Yes
Chrysene	40	ug/kg	1	_	U	Yes
bis(2-Chloroethoxy)methane	79	ug/kg	1	_	U	Yes
bis(2-Chloroethyl)ether	79	ug/kg	1	-	Ū	Yes
• •						

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
bis(2-Chloroisopropyl)ether	79	ug/kg		-	U	Yes	
4-Chlorophenyl phenyl ether	79	ug/kg		-	Ü	Yes	
2,4-Dinitrotoluene	40	ug/kg		_	U	Yes	
2,6-Dinitrotoluene	40	ug/kg		_	U	Yes	
3,3'-Dichlorobenzidine	79	ug/kg		_	U	Yes	
Dibenzo(a,h)anthracene	40	ug/kg		-	U	Yes	
Dibenzofuran	79	ug/kg		_	U	Yes	
Di-n-butyl phthalate	79	ug/kg		-	U	Yes	
Di-n-octyl phthalate	79	ug/kg	1	-	U	Yes	
Diethyl phthalate	79	ug/kg	1	-	U	Yes	
Dimethyl phthalate	79	ug/kg	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	79	ug/kg	1	-	U	Yes	
Fluoranthene	40	ug/kg	1	-	U	Yes	
Fluorene	40	ug/kg	1	-	U	Yes	
Hexachlorobenzene	79	ug/kg	1	-	U	Yes	
Hexachlorobutadiene	40	ug/kg	1	-	UJ	Yes	
Hexachlorocyclopentadiene	400	ug/kg	1	-	U	Yes	
Hexachloroethane	200	ug/kg	1	-	UJ	Yes	
Indeno(1,2,3-cd)pyrene	79	ug/kg	1	-	U	Yes	
Isophorone	79	ug/kg	1	-	U	Yes	
2-Methylnaphthalene	79	ug/kg	1	-	U	Yes	
2-Nitroaniline	200	ug/kg	1	-	U	Yes	
3-Nitroaniline	200	ug/kg	1	-	UJ	Yes	
4-Nitroaniline	200	ug/kg	1	-	U	Yes	
Nitrobenzene	79	ug/kg	1	-	U	Yes	
N-Nitroso-di-n-propylamine	79	ug/kg	1	-	U	Yes	
Nitrosodiphenylamine	200	ug/kg	1	-	U	Yes	
Phenanthrene	40	ug/kg	1	-	U	Yes	
Pyrene	40	ug/kg	1	-	U	Yes	
1,2,4,5.6-Tetrachlorobenzene	200	ug/kg	1	-	U	Yes	
METHOD: 8270D (SIM)							
Naphthalene	4.0	ug/L	1	-	U	Yes	
1,4-Dioxane	4.0	ug/kg		_	Ü	Yes	
		0					

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC18972-4

Sample location: BMSMC Building 5 Area

Sampling date: 4/21/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	5.6	ug/l	1 55	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	~	U	Yes
2,4,5.6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-8	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	,-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	.Yes
Benzo(b)fluoranthene	1.1	ug/l	1	~	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	5.6	ug/l	1	-	U	Yes
Butyl benzyl phthalate	5.6	ug/l	1	-	U	Yes
1,1'-Biphenyl	5.6	ug/l	1	-	U	Yes
2-Chloronaphthalene	5.6	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	82	ug/Kg			U	Yes
4-Chlorophenyl phenyl ether	82	ug/Kg		-	U	Yes
2,4-Dinitrotoluene	41	ug/Kg		-	U	Yes
2,6-Dinitrotoluene	41	ug/Kg	1	-	U	Yes
3,3'-Dichlorobenzidine	82	ug/Kg		-	U	Yes
Dibenzo(a,h)anthracene	41	ug/Kg	1	-	U	Yes
Dibenzofuran	82	ug/Kg	1	-	U	Yes
Di-n-butyl phthalate	82	ug/Kg	1	-	U	Yes
Di-n-octyl phthalate	82	ug/Kg	1	-	U	Yes
Diethyl phthalate	82	ug/Kg	1	_	U	Yes
Dimethyl phthalate	82	ug/Kg	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	82	ug/Kg	1	-	U	Yes
Fluoranthene	41	ug/Kg	1	-	U	Yes
Fluorene	41	ug/Kg	1	-	U	Yes
Hexachlorobenzene	82	ug/Kg	1	-	U	Yes
Hexachlorobutadiene	41	ug/Kg	1	-	UJ	Yes
Hexachlorocyclopentadiene	410	ug/Kg	1	-	U	Yes
Hexachloroethane	200	ug/Kg	1	-	UJ	Yes
Indeno(1,2,3-cd)pyrene	41	ug/Kg	1	-	U	Yes
Isophorone	82	ug/Kg	1	-	U	Yes
1-Methylnaphthalene	82	ug/Kg	1	-	U	Yes
2-Methylnaphthalene	82	ug/Kg	1	7.2	U	Yes
2-Nitroaniline	200	ug/Kg	1	_	U	Yes
3-Nitroaniline	200	ug/Kg	1	-	UJ	Yes
4-Nitroaniline	200	ug/Kg	1	-	U	Yes
Nitrobenzene	82	ug/Kg	1	_	U	Yes
N-Nitroso-di-n-propylamine	82	ug/Kg	1	-	U	Yes
Nitrosodiphenylamine	200	ug/Kg	1	-	U	Yes
Phenanthrene	41	ug/Kg	1	-	U	Yes
Pyrene	41	ug/Kg	1	-	U	Yes
1,2,4,5.6-Tetrachlorobenzene	200	ug/Kg	1	-	U	Yes
METHOD:	8270D (SI	M)				
Naphthalene	4.1	ug/Kg	1	_	U	Yes
1,4-Dioxane	4.1	ug/Kg		-	U	Yes
•		J. 0	_		-	

	Project Number:_JC18972
REVIEW OF SEMIVOLATILE OR	GANIC PACKAGE
The following guidelines for evaluating volatile required validation actions. This document will assigned judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedent Section, SOP HW-35A, July 2015 –Revision 0. Seminary and data validation actions listed on the data reviguidance document, unless otherwise noted.	sist the reviewer in using professional better serving the needs of the data of the USEPA data validation guidance in EPA Hazardous Waste Support platile Data Validation. The QC criteria
The hardcopied (laboratory name) _Accutest_reviewed and the quality control and performance data included:	data package received has been summarized. The data review for SVOCs
Lab. Project/SDG No.:JC18972 No. of Samples:4_Full_scan/4_SIM	Sample matrix:Groundwater/Soil
Trip blank No.: - Field blank No.: - Equipment blank No.: - Field duplicate No.: -	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_ABN_TCL_list_by_method_SW846-analyzed_by_method_SW846-8270D_(SIM)	8270D;_Naphthalene_and_1,4-Dioxane_
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Rafuel Default Date:May_17,_2016	
Date:May_17,_2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
M		
of greater and a		
	A2 7 0 00000	

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION
All samples extractive recommended criteria.	cted and analyzed eria, no action taker	 within method recommende professional judgment	d hold	ding time. Sample preservation outside the

Cooler temperature (Criteria: 4 + 2 °C):	_16.2ºC
--	---------

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

		ing Time Actions for Semis	· · · · · · · · · · · · · · · · · · ·	tion
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professional judgme	
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	1	ບນ
	Yes/No	Grossly Exceeded	J	UJ or R
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	ບJ
	Yes/No	Grossly Exceeded	J	UJ or R

	All critena were met _X_	
Criteria	were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

- _X__ The DFTPP performance results were reviewed and found to be within the specified criteria.
- _X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:
	·		
	<u> </u>		
_			

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:Instrument ID numbers:	_04/21/2016_(SIM) GCMS3M	04/14/2016_(SIM) GCMS4M
Matrix/Level:	Aqueous/low	Aqueous/low
Date of initial calibration:_04/04/ Instrument ID numbers:GCN Matrix/Level:Aqueous	MSF	04/13-14/16_(Scan) GCMSZ Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
					100
	<u> </u> 				

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	± 20.0	± 25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	±25.0
2-Chlorophenol	0.200	20.0	± 20.0	±25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	± 20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	± 20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	± 25.0
Nitrobenzene	0.090	20.0	± 20.0	±25.0
Isophorone	0.100	20.0	±20.0	±25.0
2-Nitrophenol	0.060	20,0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	± 20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	±25,0
Naphthalene	0.200	20.0	±20.0	±25,0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	± 25.0
Caprolactam	0.010	40.0	± 30.0	±50.0 %
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	±25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	± 25.0
1,1'-Biphenyl	0.200	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	± 20.0	± 25.0
2-Nitroaniline	0.060	20.0	±25.0	£25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	± 20.0	±25.0
Acenaphthylene	0.400	20.0	± 20.0	± 25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	± 20.0	± 25.0
Diethylphthalate	0.300	20.0	± 20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	£25.0
4-Chlorophenyl-phenylether	0.100	20.0	± 20.0	± 25.0
Fluorene	0.200	20.0	±20.0	±25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	± 25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	±20.0	± 25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	± 20.0	± 25.0
Anthracene	0.200	20.0	± 20.0	±25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0.500	20.0	± 20.0	± 25.0
Fluoranthene	0.100	20.0	± 20.0	± 25.0
Pyrene	0.400	20.0	± 25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	± 25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	± 25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	± 25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	±20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	±25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	±25.0
Fluorene	0.700	20.0	± 25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	± 25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	\Box
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	± 25.0	± 50.0
Phenol-d ₅	0.010	20.0	± 25.0	£25.0
Bis-(2-chloroethyl)ether-d _k	0.100	20.0	± 20.0	± 25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	± 20.0	±25.0
4-Chloroaniline-d ₄	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-ds	0.050	20.0	± 20.0	±25.0
2-Nitrophenol-d ₄	0.050	20.0	± 20.0	±25.0
2,4-Dichlorophenol-d;	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	±25.0
Acenaphthylene-d _x	0.400	20.0	±20.0	±25.0
4-Nitrophenol-d4	0.010	40.0	±40.0	± 50.0
Fluorene-d ₁₀	0,100	20.0	± 20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	± 30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	± 25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20.0	± 25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were mel
Criteria were not met
and/or see belowX

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

		04/13-14/16_(Scan)_		
Date of initial calibration verification (CCV):_04/05/16;04/05-06/16_ Date of continuing calibration verification (CCV):04/29/16 Date of closing CCV: Instrument ID numbers:GCMSF			04/03/16: 05/03/16	
Instrumen	nt ID number	s:GCN	MSF	GCMSZ
Matrix/Le	vel:	Aqueous/low		_Aqueous/low
Date of in	itial calibrati	on:04/21/16_(SIM)	04/21/16	04/14/16 04/14/16
Date of co	ontinuing ca	ibration verification (CC)	V):_05/03/16;_05/04/16_ 05/06/16: 05/09/16	04/26/16
Date of classification	osing CCV:_ nt ID number	s:GCMS	3M	GCMS4M
Matrix/Lev	vel:	Aqueous	/low	Aqueous/low
DATE	LAB FIL ID#	E CRITERIA OUT RFs, %RSD, %D, r	1	SAMPLES AFFECTED
		See	enclosed list	

Note: Initial and continuing calibration verifications meet the required criteria except the cases describe in the list enclosed. Analytes not detected in affected samples, results qualified (UJ).

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, +40 %. No action taken

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to

evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV Criteria for Closing CCV	Ac	tion	
Official for Opening CCV	Citieria for Chisning CCV	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	UJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

CONTINUING CALIBRATION VERIFICATION

INSTRUMENT: GCMSF DATE: 04/26/16 FILE ID: cc6363-25

Compound	%Dev	
n-Nitroso-di-n-propylamine Nitrobenzene-d5 Nitrobenzene 4-Nitrophenol 2-Nitroaniline	-29.9# -21.4# -25.3# -40.9# -22.9#	

CONTINUING CALIBRATION VERIFICATION

INSTRUMENT: GCMSZ DATE: 04/28/16 FILE ID: cc1382-25

Compound	%Dev	
Hexachloroethane	-24.8#	
Hexachlorobutadiene	-37.7#	
N-Nitroso-di-n-propylamine	-22.5#	
4-Nitroaniline*	21.7#	

CONTINUING CALIBRATION VERIFICATION

INSTRUMENT: GCMSZ
DATE: 05/03/16
FILE ID: cc1382-25

Compound	%Dev	
Hexachloroethane	-22.6#	
Hexachlorobutadiene	-46.9#	
3-Nitroaniline	24.6#	
4-Nitroaniline*	22.3#	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana			anks.	
Field/Equipmen	t/Trip blank			
DATE Analyzed	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/e	quipment_blank	s_analyzed_wi	th_this_data_package	

All criteria were met _	Χ
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action	
	Detect	Non-detect	No qualification	
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)	
		≥ CRQL	Use professional judgment	
		< CRQL	Report at CRQL and qualify as non-detect (U)	
Method,		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)	
TCLP/SPLP LEB, Field			≥ CRQL and ≥ Blank Result	Use professional judgment
		Detect	Report at sample results and qualify as unusable (R)	
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment	

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect Non-dete		
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ	
Lower Acceptance limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:Groundwater				
SAMPLE ID	SURROGATE COMPOUND	ACTION		
_DMCs_meet_the_requi _within_laboratory_reco	ired_criteriaNon-deuterated_surrogates_added very_limits	_to_the_samples		

Table 8. Semivolatile DMCs and the Associated Target Analytes

Tax	irget Analytes
Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
Benzaldehyde	Bis(2-chloroethyl)ether
Phenol	2,2'-Oxybis(1-chloropropane)
	Bis(2-chloroethoxy)methane
4-Methylphenol-da (DMC-5)	4-Chloroaniline-d4(DMC-6)
2-Methylphenol	4-Chloroaniline
3-Methylphenol	Hexachlorocyclopentadiene
4-Methylphenol	Dichlorobenzidine
2,4-Dimethylphenol	[
2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Isophorone	2,4-Dichlorophenol
2-Nitrophenol	Hexachlorobutadiene
	Hexachlorocyclopentadiene
	4-Chloro-3-methylphenol
	2,4,6-Trichlorophenol
	2,4,5-Trichlorophenol
	1,2,4,5-Tetrachlorobenzene
	*Pentachlorophenol
	2,3,4,6-Tetrachlorophenol
Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
*Naphthalene	2-Nitroaniline
*2-Methylnaphthalene	3-Nitroaniline
2-Chloronaphthalene	2,4-Dinitrophenol
*Acenaphthylene	4-Nitrophenol
*Acenaphthene	4-Nitroaniline
	Phenol 4-Methylphenol-da (DMC-5) 2-Methylphenol 3-Methylphenol 4-Methylphenol 2,4-Dimethylphenol 2-Nitrophenol-d4 (DMC-8) Isophorone 2-Nitrophenol Acenaphthylene-da (DMC-11) *Naphthalene *2-Methylnaphthalene 2-Chloronaphthylene *Acenaphthylene

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the

Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC18601-1R				Matrix/Level:S Matrix/Level:S		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	

Note: No MS/MSD analyzed for the aqueous sample matrix. Blank spike/blank spike duplicate used to assess accuracy. Analytes outside the laboratory control limits are shown on the enclosed list. No action taken

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

BLANK SPIKE/BLANK SPIKE DUPLICATE

SDG: JC18972 Matrix: Aqueous

The QC reported here applies to the following samples: Method: SW846 8270D

JC18972-4

Compound	Spike ug/l	BS ug/l	BS %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
Acenaphthylene Acetophenone 2-Nitroaniline N-Nitroso-di-n-propylamine	50 50 50 50	50.2 59.6 64.0 62.1	100* a 119* a 128* b 124* b	48.4 50.7	79 97 101 97	24 21 23 24	49-99/30 52-111/30 51-127/30 49-117/30

⁽a) Outside of control limits, but within reasonable method recovery limits.

⁽b) High percent recoveries and no associated positive found in the QC batch.

All criteria were met _X
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts meet the required criteria.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Crneria	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+:	UJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	re Retention Times (RRTs) of reported com [[opening Continuing Calibration Verification on].	
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
	======================================	
		
	n the associated calibration standard (opening nust match according to the following criteria: All ions present in the standard mass spectromagnets are spectromagnets. The relative intensities of these ions mean standard and sample spectra (e.g., for an standard spectrum, the corresponding sa 30-70%).	ctrum at a relative intensity greater than um. nust agree within ±20% between the nion with an abundance of 50% in the
C.	lons present at greater than 10% in the sa the standard spectrum, must be evaluate spectral interpretation.	•
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_co	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

Li	ist	T	Cs
니	ISI.	-11	La

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action			
Criteria	Detects	Non-detects			
%Solids < 10.0%	Use professional judgment	Use professional judgment			
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment			
%Solids > 30.0%	No qualification	No qualification			

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		- 450
		1000
-		
		
0.00		

				Crite	riteria were metN/A ria were not met or see below	
FIELD DUPLICAT	E PRECIS	SION				
Sample IE)s:	-	<u> </u>	Matrix:	- 74	
analyses measure laboratory duplica results will have a identical field dupl The project QAPP Suggested criteria	Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. The project QAPP should be reviewed for project-specific information. Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.					
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No field/laboratory duplicate analyzed as part of this data package. MS/MSD % and blank spike/blank spike duplicate recoveries RPD used to assess precision; RPD within the required criteria < 50 % for detected target analytes.						

All criteria were metX
Critena were not met
and/or see below

OTHER ISSUES		
A. System Perform	nance	
List samples qualified b	pased on the degradation of system	n performance during simple analysis:
Sample ID	Comments	Actions
Action:	Q .	
degraded during samp		etermined that system performance has aboratory Program COR any action as a cantly affected the data.
B. Overall Assess	ment of Data	
List samples qualified t	pased on other issues:	
Sample ID	Comments	Actions
No other issues that	required the need to qualify th	e_dataResults_are_valid_and_can_be
		~_~~~

Action:

_used_for_decission_purposes._

- Use professional judgment to determine if there is any need to qualify data which were not 1. qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results